670 research outputs found

    Circular formation control of fixed-wing UAVs with constant speeds

    Full text link
    In this paper we propose an algorithm for stabilizing circular formations of fixed-wing UAVs with constant speeds. The algorithm is based on the idea of tracking circles with different radii in order to control the inter-vehicle phases with respect to a target circumference. We prove that the desired equilibrium is exponentially stable and thanks to the guidance vector field that guides the vehicles, the algorithm can be extended to other closed trajectories. One of the main advantages of this approach is that the algorithm guarantees the confinement of the team in a specific area, even when communications or sensing among vehicles are lost. We show the effectiveness of the algorithm with an actual formation flight of three aircraft. The algorithm is ready to use for the general public in the open-source Paparazzi autopilot.Comment: 6 pages, submitted to IROS 201

    Distributed, adaptive deployment for nonholonomic mobile sensor networks : theory and experiments

    Get PDF
    In this work we show the Lyapunov stability and convergence of an adaptive and decentralized coverage control for a team of mobile sensors. This new approach assumes nonholonomic sensors rather than the usual holonomic sensors found in the literature. The kinematics of the unicycle model and a nonlinear control law in polar coordinates are used in order to prove the stability of the controller applied over a team of mobile sensors. This controller is adaptive, which means that the mobile sensors are able to estimate and map a density function in the sampling space without a previous knowledge of the environment. The controller is decentralized, which means that each mobile sensor has its own estimate and computes its own control input based on local information. In order to guarantee the estimate convergence, the mobile sensors implement a consensus protocol in continuous time assuming a fixed network topology and zero communication delays. The convergence and feasibility of the coverage control algorithm are verified through simulations in Matlab and Stage. The Matlab simulations consider only the kinematics of the mobile sensors and the Stage simulations consider the dynamics and the kinematics of the sensors. The Matlab simulations show successful results since the sensor network carries out the coverage task and distributes itself over the estimated density function. The adaptive law which is defined by a differential equation must be approximated by a difference equation to be implementable in Stage. The Stage simulations show positive results, however, the system is not able to achieve an accurate estimation of the density function. In spite of that, the sensors carry out the coverage task distributing themselves over the sampling space. Furthermore, some experiments are carried out using a team of four Pioneer 3-AT robots sensing a piecewise constant light distribution function. The experimental results are satisfactory since the robots carry out the coverage task. However, the accuracy of the estimation is affected by the approximation of the adaptation law by difference equations, the number of robots and sensor sensitivity. Based on the results of this research, the decentralized adaptive coverage control for nonholonomic vehicles has been analyzed from a theoretical approach and validated through simulation and experimentation with positive results. As a future work we will investigate: (i) new techniques to improve the implementation of the adaptive law in real time,(ii) the consideration of the dynamics of the mobile sensors, and (iii) the stability and convergence of the adaptive law for continuous-time variant density function

    Distributed coordinate tracking control of multiple wheeled mobile robots

    Get PDF
    In this thesis, distributed coordinate tracking control of multiple wheeled-mobile robots is studied. Control algorithms are proposed for both kinematic and dynamic models. All vehicle agents share the same mechanical structure. The communication topology is leader-follower topology and the reference signal is generated by the virtual leader. We will introduce two common kinematic models of WMR and control algorithms are proposed for both kinematic models with the aid of graph theory. Since it is more realistic that the control inputs are torques so dynamic extension is studied following by the kinematics. Torque controllers are designed with the aid of backstepping method so that the velocities of the mobile robots converge to the desired velocities. Because of the fact that in practice, the inertial parameter of WMR maybe not exactly known or even unknown, so both dynamics with and without inertial uncertainties are considered in this thesis

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    Distributed formation tracking control of multiple car-like robots

    Get PDF
    In this thesis, distributed formation tracking control of multiple car-like robots is studied. Each vehicle can communicate and send or receive states information to or from a portion of other vehicles. The communication topology is characterized by a graph. Each vehicle is considered as a vertex in the graph and each communication link is considered as an edge in the graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for vehicle kinematics are designed with the aid of graph theory. Two control algorithms are designed based on the chained-form system and its transformation respectively. Both algorithms achieve exponential convergence to the desired reference states. Then vehicle dynamics is considered and dynamic controllers are designed with the aid of two types of kinematic-based controllers proposed in the first section. Finally, a special case of switching graph is addressed considering the probability of vehicle disability and links breakage

    Hybrid Flocking Control Algorithm with Application to Coordination between Multiple Fixed-wing Aircraft

    Get PDF
    Flocking, as a collective behavior of a group, has been investigated in many areas, and in the recent decade, flocking algorithm design has gained a lot of attention due to its variety of potential applications. Although there are many applications exclusively related to fixed-wing aircraft, most of the theoretical works rarely consider these situations. The fixed-wing aircraft flocking is distinct from the general flocking problems by four practical concerns, which include the nonholonomic constraint, the limitation of speed, the collision avoidance and the efficient use of airspace. None of the existing works have addressed all these concerns. The major difficulty is to take into account the all four concerns simultaneously meanwhile having a relatively mild requirement on the initial states of aircraft. In this thesis, to solve the fixed-wing aircraft flocking problem, a supervisory decentralized control algorithm is proposed. The proposed control algorithm has a switching control structure, which basically includes three modes of control protocol and a state-dependent switching logic. Three modes of decentralized control protocol are designed based on the artificial potential field method, which helps to address the nonholonomic constraint, the limitation of speed and the collision avoidance for appropriate initial conditions. The switching logic is designed based on the invariance property induced by the control modes such that the desirable convergence properties of the flocking behavior and the efficient use of airspace are addressed. The proposed switching logic can avoid the fast mode switching, and the supervisor does not require to perform switchings frequently and respond to the aircraft immediately, which means the desired properties can still be guaranteed with the presence of the dwell time in the supervisor

    Lane changing and merging maneuvers of car-like robots

    Get PDF
    This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers
    • …
    corecore