20,612 research outputs found

    CARE: Cooperative Autonomy for Resilience and Efficiency of Robot Teams for Complete Coverage of Unknown Environments under Robot Failures

    Full text link
    This paper addresses the problem of Multi-robot Coverage Path Planning (MCPP) for unknown environments in the presence of robot failures. Unexpected robot failures can seriously degrade the performance of a robot team and in extreme cases jeopardize the overall operation. Therefore, this paper presents a distributed algorithm, called Cooperative Autonomy for Resilience and Efficiency (CARE), which not only provides resilience to the robot team against failures of individual robots, but also improves the overall efficiency of operation via event-driven replanning. The algorithm uses distributed Discrete Event Supervisors (DESs), which trigger games between a set of feasible players in the event of a robot failure or idling, to make collaborative decisions for task reallocations. The game-theoretic structure is built using Potential Games, where the utility of each player is aligned with a shared objective function for all players. The algorithm has been validated in various complex scenarios on a high-fidelity robotic simulator, and the results demonstrate that the team achieves complete coverage under failures, reduced coverage time, and faster target discovery as compared to three alternative methods

    3D multi-robot patrolling with a two-level coordination strategy

    Get PDF
    Teams of UGVs patrolling harsh and complex 3D environments can experience interference and spatial conflicts with one another. Neglecting the occurrence of these events crucially hinders both soundness and reliability of a patrolling process. This work presents a distributed multi-robot patrolling technique, which uses a two-level coordination strategy to minimize and explicitly manage the occurrence of conflicts and interference. The first level guides the agents to single out exclusive target nodes on a topological map. This target selection relies on a shared idleness representation and a coordination mechanism preventing topological conflicts. The second level hosts coordination strategies based on a metric representation of space and is supported by a 3D SLAM system. Here, each robot path planner negotiates spatial conflicts by applying a multi-robot traversability function. Continuous interactions between these two levels ensure coordination and conflicts resolution. Both simulations and real-world experiments are presented to validate the performances of the proposed patrolling strategy in 3D environments. Results show this is a promising solution for managing spatial conflicts and preventing deadlocks

    Decentralized Informative Path Planning with Exploration-Exploitation Balance for Swarm Robotic Search

    Full text link
    Swarm robotic search is concerned with searching targets in unknown environments (e.g., for search and rescue or hazard localization), using a large number of collaborating simple mobile robots. In such applications, decentralized swarm systems are touted for their task/coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely nature-inspired swarm heuristics and multi-robotic search methods. However, simultaneously offering computationally-efficient scalability and fundamental insights into the exhibited behavior (instead of a black-box behavior model), remains challenging under either of these two class of approaches. In this paper, we develop an important extension of the batch Bayesian search method for application to embodied swarm systems, searching in a physical 2D space. Key contributions lie in: 1) designing an acquisition function that not only balances exploration and exploitation across the swarm, but also allows modeling knowledge extraction over trajectories; and 2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Significantly superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines, along with favorable performance scalability with increasing swarm size.Comment: Accepted for presentation in (and publication in the proceedings of) The ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2019

    Artificial Intelligence-Based Techniques for Emerging Robotics Communication: A Survey and Future Perspectives

    Full text link
    This paper reviews the current development of artificial intelligence (AI) techniques for the application area of robot communication. The study of the control and operation of multiple robots collaboratively toward a common goal is fast growing. Communication among members of a robot team and even including humans is becoming essential in many real-world applications. The survey focuses on the AI techniques for robot communication to enhance the communication capability of the multi-robot team, making more complex activities, taking an appreciated decision, taking coordinated action, and performing their tasks efficiently.Comment: 11 pages, 6 figure

    Multi-robot coverage to locate fixed targets using formation structures

    Full text link
    This paper develops an algorithm that guides a multi-robot system in an unknown environment in search of fixed targets. The area to be scanned contains an unknown number of convex obstacles of unknown size and shape. The algorithm covers the entire free space in a sweeping fashion and as such relies on the use of robot formations. The geometry of the robot group is a lateral line formation, which is allowed to split and rejoin when passing obstacles. It is our main goal to exploit this formation structure in order to reduce robot resources to a minimum. Each robot has a limited and finite amount of memory available. No information of the topography is recorded. Communication between two robots is only possible up to a maximum inter-robot distance, and if the line-of-sight between both robots is not obstructed. Broadcasting capabilities and indirect communication are not allowed. Supervisory control is prohibited. The number of robots equipped with GPS is kept as small as possible. Applications of the algorithm are mine field clearance, search-and-rescue missions, and intercept missions. Simulations are included and made available on the internet, demonstrating the flexibility of the algorithm

    A Coordinated Search Strategy for Multiple Solitary Robots: An Extension

    Full text link
    The problem of coordination without a priori information about the environment is important in robotics. Applications vary from formation control to search and rescue. This paper considers the problem of search by a group of solitary robots: self-interested robots without a priori knowledge about each other, and with restricted communication capacity. When the capacity of robots to communicate is limited, they may obliviously search in overlapping regions (i.e. be subject to interference). Interference hinders robot progress, and strategies have been proposed in the literature to mitigate interference [1], [2]. Interaction of solitary robots has attracted much interest in robotics, but the problem of mitigating interference when time for search is limited remains an important area of research. We propose a coordination strategy based on the method of cellular decomposition [3] where we employ the concept of soft obstacles: a robot considers cells assigned to other robots as obstacles. The performance of the proposed strategy is demonstrated by means of simulation experiments. Simulations indicate the utility of the strategy in situations where a known upper bound on the search time precludes search of the entire environment.Comment: This paper has 9 two-columns pages with 33 figures. It is an extension (in terms of theoretical and practical investigation) of a conference paper published on 2019 Third IEEE International Conference on Robotic Computing (IRC). Revised title (contents are unchanged) because Google Scholar is failing to distinguish it from an earlier versio

    Voluntary Retreat for Decentralized Interference Reduction in Robot Swarms

    Full text link
    In densely-packed robot swarms operating in confined regions, spatial interference -- which manifests itself as a competition for physical space -- forces robots to spend more time navigating around each other rather than performing the primary task. This paper develops a decentralized algorithm that enables individual robots to decide whether to stay in the region and contribute to the overall mission, or vacate the region so as to reduce the negative effects that interference has on the overall efficiency of the swarm. We develop this algorithm in the context of a distributed collection task, where a team of robots collect and deposit objects from one set of locations to another in a given region. Robots do not communicate and use only binary information regarding the presence of other robots around them to make the decision to stay or retreat. We illustrate the efficacy of the algorithm with experiments on a team of real robots.Comment: 7 pages, 6 figures. Accepted for publication, and will be presented at the International Conference on Robotics and Automation (ICRA) 2019, Montreal, Canad

    Exploiting Heterogeneous Robotic Systems in Cooperative Missions

    Full text link
    In this paper we consider the problem of coordinating robotic systems with different kinematics, sensing and vision capabilities to achieve certain mission goals. An approach that makes use of a heterogeneous team of agents has several advantages when cost, integration of capabilities, or large search areas need to be considered. A heterogeneous team allows for the robots to become "specialized", accomplish sub-goals more effectively, and thus increase the overall mission efficiency. Two main scenarios are considered in this work. In the first case study we exploit mobility to implement a power control algorithm that increases the Signal to Interference plus Noise Ratio (SINR) among certain members of the network. We create realistic sensing fields and manipulation by using the geometric properties of the sensor field-of-view and the manipulability metric, respectively. The control strategy for each agent of the heterogeneous system is governed by an artificial physics law that considers the different kinematics of the agents and the environment, in a decentralized fashion. Through simulation results we show that the network is able to stay connected at all times and covers the environment well. The second scenario studied in this paper is the biologically-inspired coordination of heterogeneous physical robotic systems. A team of ground rovers, designed to emulate desert seed-harvester ants, explore an experimental area using behaviors fine-tuned in simulation by a genetic algorithm. Our robots coordinate with a base station and collect clusters of resources scattered within the experimental space. We demonstrate experimentally that through coordination with an aerial vehicle, our ant-like ground robots are able to collect resources two times faster than without the use of heterogeneous coordination

    Connectivity maintenance by robotic Mobile Ad-hoc NETwork

    Full text link
    The problem of maintaining a wireless communication link between a fixed base station and an autonomous agent by means of a team of mobile robots is addressed in this work. Such problem can be of interest for search and rescue missions in post disaster scenario where the autonomous agent can be used for remote monitoring and first hand knowledge of the aftermath, while the mobile robots can be used to provide the agent the possibility to dynamically send its collected information to an external base station. To study the problem, a distributed multi-robot system with wifi communication capabilities has been developed and used to implement a Mobile Ad-hoc NETwork (MANET) to guarantee the required multi-hop communication. None of the robots of the team possess the knowledge of agent's movement, neither they hold a pre-assigned position in the ad-hoc network but they adapt with respect to the dynamic environmental situations. This adaptation only requires the robots to have the knowledge of their position and the possibility to exchange such information with their one-hop neighbours. Robots' motion is achieved by implementing a behavioural control, namely the Null-Space based Behavioural control, embedding the collective mission to achieve the required self-configuration. Validation of the approach is performed by means of demanding experimental tests involving five ground mobile robots capable of self localization and dynamic obstacle avoidance

    Aerial Drop of Robots and Sensors for Optimal Area Coverage

    Full text link
    The problem of rapid optimal coverage through the distribution a team of robots or static sensors via means of aerial drop is the topic of this work. Considering a nonholonomic (fixed-wing) aerial robot that corresponds to the carrier of a set of small holonomic (rotorcraft) aerial robots as well as static modules that are all equipped with a camera sensor, we address the problem of selecting optimal aerial drop times and configurations while the motion capabilities of the small aerial robots are also exploited to further survey their area of responsibility until they hit the ground. The overall solution framework consists of lightweight path-planning algorithms that can run on virtually any processing unit that might be available on-board. Evaluation studies in simulation as well as a set of elementary experiments that prove the validity of important assumptions illustrate the potential of the approach.Comment: 6 pages, 9 figures, technical repor
    • …
    corecore