111,460 research outputs found

    Improving lifecycle query in integrated toolchains using linked data and MQTT-based data warehousing

    Full text link
    The development of increasingly complex IoT systems requires large engineering environments. These environments generally consist of tools from different vendors and are not necessarily integrated well with each other. In order to automate various analyses, queries across resources from multiple tools have to be executed in parallel to the engineering activities. In this paper, we identify the necessary requirements on such a query capability and evaluate different architectures according to these requirements. We propose an improved lifecycle query architecture, which builds upon the existing Tracked Resource Set (TRS) protocol, and complements it with the MQTT messaging protocol in order to allow the data in the warehouse to be kept updated in real-time. As part of the case study focusing on the development of an IoT automated warehouse, this architecture was implemented for a toolchain integrated using RESTful microservices and linked data.Comment: 12 pages, worksho

    Information standards to support application and enterprise interoperability for the smart grid

    Get PDF
    Copyright @ 2012 IEEE.Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.This study is financially supported by the National Grid, UK

    Increasing the Efficiency of Rule-Based Expert Systems Applied on Heterogeneous Data Sources

    Get PDF
    Nowadays, the proliferation of heterogeneous data sources provided by different research and innovation projects and initiatives is proliferating more and more and presents huge opportunities. These developments create an increase in the number of different data sources, which could be involved in the process of decisionmaking for a specific purpose, but this huge heterogeneity makes this task difficult. Traditionally, the expert systems try to integrate all information into a main database, but, sometimes, this information is not easily available, or its integration with other databases is very problematic. In this case, it is essential to establish procedures that make a metadata distributed integration for them. This process provides a “mapping” of available information, but it is only at logic level. Thus, on a physical level, the data is still distributed into several resources. In this sense, this chapter proposes a distributed rule engine extension (DREE) based on edge computing that makes an integration of metadata provided by different heterogeneous data sources, applying then a mathematical decomposition over the antecedent of rules. The use of the proposed rule engine increases the efficiency and the capability of rule-based expert systems, providing the possibility of applying these rules over distributed and heterogeneous data sources, increasing the size of data sets that could be involved in the decision-making process

    A space-time neural network

    Get PDF
    Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given
    corecore