12,005 research outputs found

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Design exploration and performance strategies towards power-efficient FPGA-based achitectures for sound source localization

    Get PDF
    Many applications rely on MEMS microphone arrays for locating sound sources prior to their execution. Those applications not only are executed under real-time constraints but also are often embedded on low-power devices. These environments become challenging when increasing the number of microphones or requiring dynamic responses. Field-Programmable Gate Arrays (FPGAs) are usually chosen due to their flexibility and computational power. This work intends to guide the design of reconfigurable acoustic beamforming architectures, which are not only able to accurately determine the sound Direction-Of-Arrival (DoA) but also capable to satisfy the most demanding applications in terms of power efficiency. Design considerations of the required operations performing the sound location are discussed and analysed in order to facilitate the elaboration of reconfigurable acoustic beamforming architectures. Performance strategies are proposed and evaluated based on the characteristics of the presented architecture. This power-efficient architecture is compared to a different architecture prioritizing performance in order to reveal the unavoidable design trade-offs

    Non-power-of-Two FFTs: Exploring the Flexibility of the Montium TP

    Get PDF
    Coarse-grain reconfigurable architectures, like the Montium TP, have proven to be a very successful approach for low-power and high-performance computation of regular digital signal processing algorithms. This paper presents the implementation of a class of non-power-of-two FFTs to discover the limitations and Flexibility of the Montium TP for less regular algorithms. A non-power-of-two FFT is less regular compared to a traditional power-of-two FFT. The results of the implementation show the processing time, accuracy, energy consumption and Flexibility of the implementation

    A high level e-maintenance architecture to support on-site teams

    Get PDF
    Emergent architectures and paradigms targeting reconfigurable manufacturing systems increasingly rely on intelligent modules to maximize the robustness and responsiveness of modern installations. Although intelligent behaviour significantly minimizes the occurrence of faults and breakdowns it does not exclude them nor can prevent equipment’s normal wear. Adequate maintenance is fundamental to extend equipments’ life cycle. It is of major importance the ability of each intelligent device to take an active role in maintenance support. Further this paradigm shift towards “embedded intelligence”, supported by cross platform technologies, induces relevant organizational and functional changes on local maintenance teams. On the one hand, the possibility of outsourcing maintenance activities, with the warranty of a timely response, through the use of pervasive networking technologies and, on the other hand, the optimization of local maintenance staff are some examples of how IT is changing the scenario in maintenance. The concept of e-maintenance is, in this context, emerging as a new discipline with defined socio-economic challenges. This paper proposes a high level maintenance architecture supporting maintenance teams’ management and offering contextualized operational support. All the functionalities hosted by the architecture are offered to the remaining system as network services. Any intelligent module, implementing the services’ interface, can report diagnostic, prognostic and maintenance recommendations that enable the core of the platform to decide on the best course of action.manufacturing systems, platform technologies, maintenance
    • 

    corecore