1,433 research outputs found

    Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network. Moreover, Minimum-sized Connected Dominating Set (MCDS) has become a well-known approach for constructing a Virtual Backbone (VB) to alleviate the broadcasting storm for efficient routing in WSNs extensively. However, no work considers the load-balance factor of CDSsin WSNs. In this dissertation, we first propose a new concept — the Load-Balanced CDS (LBCDS) and a new problem — the Load-Balanced Allocate Dominatee (LBAD) problem. Consequently, we propose a two-phase method to solve LBCDS and LBAD one by one and a one-phase Genetic Algorithm (GA) to solve the problems simultaneously. Secondly, since there is no performance ratio analysis in previously mentioned work, three problems are investigated and analyzed later. To be specific, the MinMax Degree Maximal Independent Set (MDMIS) problem, the Load-Balanced Virtual Backbone (LBVB) problem, and the MinMax Valid-Degree non Backbone node Allocation (MVBA) problem. Approximation algorithms and comprehensive theoretical analysis of the approximation factors are presented in the dissertation. On the other hand, in the current related literature, networks are deterministic where two nodes are assumed either connected or disconnected. In most real applications, however, there are many intermittently connected wireless links called lossy links, which only provide probabilistic connectivity. For WSNs with lossy links, we propose a Stochastic Network Model (SNM). Under this model, we measure the quality of CDSs using CDS reliability. In this dissertation, we construct an MCDS while its reliability is above a preset applicationspecified threshold, called Reliable MCDS (RMCDS). We propose a novel Genetic Algorithm (GA) with immigrant schemes called RMCDS-GA to solve the RMCDS problem. Finally, we apply the constructed LBCDS to a practical application under the realistic SNM model, namely data aggregation. To be specific, a new problem, Load-Balanced Data Aggregation Tree (LBDAT), is introduced finally. Our simulation results show that the proposed algorithms outperform the existing state-of-the-art approaches significantly

    Constructing Reliable Virtual Backbones in Probabilistic Wireless Sensor Networks

    Get PDF
    Most existing algorithms used for constructing virtual backbones are based on the ideal deterministic network model (DNM) in which any pair of nodes is either fully connected or completely disconnected. Different from DNM, the probabilistic network model (PNM), which presumes that there is a probability to connect and communicate between any pair of nodes, is more suitable to the practice in many real applications. In this paper, we propose a new algorithm to construct reliable virtual backbone in probabilistic wireless sensor networks. In the algorithm, we firstly introduce Effective Degree of Delivery Probability (EDDP) to indicate the reliable degree of nodes to transfer data successfully, and then exclude those nodes with zero EDDP from the candidate dominator set to construct a reliable connected dominating set (CDS). Moreover, each dominatee selects the neighbor dominator with the maximum delivery probability to transfer data. Through simulations, we demonstrate that our proposed algorithm can remarkably prolong the network lifetime compared with existing typical algorithms

    CDS-MIP: CDS-based Multiple Itineraries Planning for mobile agents in wireless sensor network

    Get PDF
    using multi agents in the wireless sensor networks (WSNs) for aggregating data has gained significant attention. Planning the optimal itinerary of the mobile agent is an essential step before the process of data gathering. Many approaches have been proposed to solve the problem of planning MAs itineraries, but all of those approaches are assuming that the MAs visit all SNs and large number of intermediate nodes. This assumption imposed a burden; the size of agent increases with the increase in the visited SNs, therefore consume more energy and spend more time in its migration. None of those proposed approaches takes into account the significant role that the connected dominating nodes play as virtual infrastructure in such wireless sensor networks WSNs. This article introduces a novel energy-efficient itinerary planning algorithmic approach based on the minimum connected dominating sets (CDSs) for multi-agents dedicated in data gathering process. In our proposed approach, instead of planning the itineraries over all sensor nodes SNs, we plan the itineraries among subsets of the MCDS in each cluster. Thus, no need to move the agent in all the SNs, and the intermediate nodes (if any) in each itinerary will be few. Simulation results have demonstrated that our approach is more efficient than other approaches in terms of overall energy consumption and task execution time

    A cluster based communication architecture for distributed applications in mobile ad hoc networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishx, 85 leavesIn this thesis, we aim to design and implement three protocols on a hierarchical architecture to solve the balanced clustering, backbone formation and distributed mutual exclusion problems for mobile ad hoc network(MANET)s. Our ¯rst goal is to cluster the MANET into balanced partitions. Clustering is a widely used approach to ease implemen-tation of various problems such as routing and resource management in MANETs. We propose the Merging Clustering Algorithm(MCA) for clustering in MANETs that merges clusters to form higher level of clusters by increasing their levels. Secondly, we aim to con-struct a directed ring topology across clusterheads which were selected by MCA. Lastly, we implement the distributed mutual exclusion algorithm based on Ricart-Agrawala algo-rithm for MANETs(Mobile RA). Each cluster is represented by a coordinator node on the ring which implements distributed mutual exclusion algorithm on behalf of any member in the cluster it represents. We show the operations of the algorithms, analyze their time and message complexities and provide results in the simulation environment of ns2
    corecore