7,642 research outputs found

    Quality of Service-Based Medium Access Control Mechanism for Multimedia Traffic in Mobile Ad Hoc Networks

    Get PDF
    This thesis describes an investigation on the problem of quality of service (QoS) support in mobile ad hoc networks (MANETs). The decentralized nature of wireless ad hoc networks makes them suitable for a variety of applications where central nodes cannot be relied on. This thesis presents a medium access control (MAC) QoS mechanism for multimedia applications in IEEE 802.11e based MANETs. IEEE 802.11e standard draft includes new features to facilitate and promote the provision of QoS guarantees in wireless networks with a long-term solution based on QoS-architectures. The motivation is driven by the need to support increasing demand of time-sensitive applications such as Voice over IP (VoIP) and video conferencing applications. IEEE 802.11e enhances the Distributed Coordination Function (DCF) and the Point Coordination Function (PCF) of the legacy IEEE 802.11, through a new coordination function: the Hybrid Coordination Function (HCF). Within the HCF, there are two methods of channel access: HCF Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). EDCA operates in infrastructure-less ad hoc mode and is widely used in MANETs, unlike HCCA, which further assures QoS provisioning operates in infrastructure mode in the presence of access points (AP). Recent researches showed that EDCA lacks QoS support of real-time traffic in MANETs due to its contention based medium access method. This thesis takes HCCA QoS provisioning potentials to MANETs by implementing a MAC mechanism in which HCCA is employed on top of EDCA to work in infrastructure-less environment like MANET with the help of multiple channels. The mechanism dedicates a unique receiver-based channel to every mobile node. It will act as virtual hybrid coordinator (VHC) to exercise control over the channel in contention-free manner while maintaining a common channel in which all mobile nodes can exchange broadcast and routing related messages. The mechanism can be easily integrated with existing 802.11 systems without modification to existing protocols while ensuring a level of admission control and resource reservation over the medium. Simulation results indicate that the mechanism significantly improves the overall network throughput by 20% at the saturation point and improves average delay by 20% at the saturation point compared to pure EDCA with or without multiple channels. Even with multi-channel EDCA, our mechanism guarantees better performance in terms of throughput and MAC delay for high priority traffic in MANET. The research contribution on MAC layer can be integrated into a larger framework for QoS support in MANETs, which opens a wide range of further research in QoS provisioning in MANETs and solve QoS multi-layer design and implementation issues

    Quality of service on ad-hoc wireless networks

    Get PDF
    Over the last years, Mobile Ad-hoc Networks (MANETs) have captured the attention of the research community. The flexibility and cost savings they provide, due to the fact that no infrastructure is needed to deploy a MANET, is one of the most attractive possibilities of this technology. However, along with the flexibility, lots of problems arise due to the bad quality of transmission media, the scarcity of resources, etc. Since real-time communications will be common in MANETs, there has been an increasing motivation on the introduction of Quality of Service (QoS) in such networks. However, many characteristics of MANETs make QoS provisioning a difficult problem.In order to avoid congestion, a reservation mechanism that works together with a Connection Admission Control (CAC) seems to be a reasonable solution. However, most of the QoS approaches found in literature for MANETs do not use reservations. One reason for that, is the difficulty on determining the available bandwidth at a node. This is needed to decide whether there are enough resources to accommodate a new connection.This thesis proposes a simple, yet effective, method for nodes in a CSMA-based MANET to compute their available bandwidth in a distributed way. Based on this value, a QoS reservation mechanism called BRAWN (Bandwidth Reservation over Ad-hoc Networks) is introduced for multirate MANETs, allowing bandwidth allocation on a per flow basis. By multirate we refer to those networks where wireless nodes are able to dynamically switch among several link rates. This allows nodes to select the highest possible transmission rate for exchanging data, independently for each neighbor.The BRAWN mechanism not only guarantees certain QoS levels, but also naturally distributes the traffic more evenly among network nodes (i.e. load balancing). It works completely on the network layer, so that no modifications on lower layers are required, although some information about the network congestion state could also be taken into account if provided by the MAC (Medium Access Control) layer. The thesis analyzes the applicability of the proposed reservation mechanism over both proactive and reactive routing protocols, and extensions to such protocols are proposed whenever needed in order to improve their performance on multirate networks. On mobile scenarios, BRAWN also achieves high QoS provisioning levels by letting the nodes to periodically refresh QoS reservations. This extension of the protocol for mobile nodes is referred as BRAWN-R (BRAWN with Refreshments).Summarizing, the outstanding features of the reservation mechanism proposed by this thesis are: (i) Multirate, i.e. it allows wireless nodes to choose among different transmission rates, in order to accommodate to different channel conditions. (ii) Targeted to CSMA-based wireless MAC protocols, e.g. 802.11. (iii) Reservation based, allowing the network nodes to pro-actively protect ongoing QoS flows, and applying an effective CAC. (iv) Adaptive to topology changes introduced by the mobility of the nodes, re-routing QoS flows to more efficient paths. (v) Feasible and simple to implement over existing MANET routing protocols (as it is shown by the prototype presented at the end of the study).Postprint (published version

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Cross-Layer Design for QoS Routing in Multi-Hop Wireless Networks

    Get PDF
    Mobile Ad Hoc Networks (MANETs) are gaining increasing popularity in recent years because of their ease of deployment. They are distributed, dynamic, and self-configurable without infrastructure support. Routing in ad hoc networks is a challenging task because of the MANET dynamic nature. Hence, researchers were focused in designing best-effort distributed and dynamic routing protocols to ensure optimum network operations in an unpredictable wireless environment. Nowadays, there is an increased demand on multimedia applications (stringent delay and reliability requirements), which makes a shift from best-effort services to Quality of Services. Actually, the challenge in wireless ad hoc networks is that neighbor nodes share the same channel and they take part in forwarding packets. Therefore, the total effective channel capacity is not only limited by the raw channel capacity but is also limited by the interactions and interferences among neighboring nodes. Thus, such factors should be taken in consideration in order to offer QoS routing. While, some of the distributed QoS route selection algorithms assume the availability of such information, others propose mechanisms to estimate them. The goals of this thesis are: (i) to analyze the performance of IEEE 802.11 MAC mechanism in non-saturation conditions, (ii) to use the analysis in the context of multi-hop ad hoc networks, (iii) to derive theoretical limits for nodes performance in multi-hop ad hoc networks, (iv) to use the multi-hop analysis in QoS route selection. We start the thesis by proposing a discrete-time 3D Markov chain model to analyze the saturation performance of the RTS/CTS access mode. This model integrates the backoff countdown process, retransmission retry limits, and transmission errors into one model. The impact of system parameters (e.g., number of nodes, packet size, retry limits, and BERs) are analyzed. Next, we extend the 3D model to analyze the performance under non-saturation conditions and finite buffer capacity using two different approaches. First, we extend the 3D model into a 4D model to integrate the transmission buffer behavior. Second, we replace the 4D model by an M/G/1/K queueing system model with independent samples from the saturation analysis. The latter model gives similar results as the former but with a reduction in the analysis complexity. Next and by means of the non-saturation analysis, we proposed an approximate mathematical model for multi-hop ad hoc networks. Furthermore, we proposed an iterative mechanism to estimate the throughput in the presence of multiple flows. Finally, we used the multi-hop analysis to propose a QoS route selection algorithm. In this algorithm, we concentrate on the throughput as a QoS parameter. However, the proposed algorithm is valid to be used with other QoS parameters, such as packet delay, packet loss probability, and fairness. Analytical and simulation results show the deficiency of the current route selection algorithm in AODV and at the same time verifies the need for QoS route selection algorithms

    Hop-Based dynamic fair scheduler for wireless Ad-Hoc networks

    Get PDF
    In a typical multihop Ad-Hoc network, interference and contention increase when flows transit each node towards destination, particularly in the presence of cross-traffic. This paper observes the relationship between throughput and path length, self-contention and interference and it investigates the effect of multiple data rates over multiple data flows in the network. Drawing from the limitations of the 802.11 specification, the paper proposes a scheduler named Hop Based Multi Queue (HBMQ), which is designed to prioritise traffic based on the hop count of packets in order to provide fairness across different data flows. The simulation results demonstrate that HBMQ performs better than a Single Drop Tail Queue (SDTQ) scheduler in terms of providing fairness. Finally, the paper concludes with a number of possible directions for further research, focusing on cross-layer implementation to ensure the fairness is also provided at the MAC layer. © 2013 IEEE
    corecore