24,145 research outputs found

    A new chance-constrained maximum capture location problem

    Get PDF
    The paper presents a new model based on the basic Maximum Capture model, MAXCAP. The New Chance–Constrained Maximum Capture modelintroduces a stochastic threshold constraint, which recognises the fact that a facility can be open only if a minimum level of demand is captured. A metaheuristic based on MAX–MIN ANT system and TABU search procedure is presented to solve the model. This is the first time that the MAX–MIN ANT system is adapted to solve a location problem. Computational experience and an application to 55–node network are also presented.Stochastic location, capture models

    A Facility Location Model for Air Pollution Detection

    Get PDF
    We describe mathematical models and practical algorithms for a problem concerned with monitoring the air pollution in a large city. We have worked on this problem within a project for assessing the air quality in the city of Rome by placing a certain number of sensors on some of the city buses. We cast the problem as a facility location model. By reducing the large number of data variables and constraints, we were able to solve to optimality the resulting MILP model within minutes. Furthermore, we designed a genetic algorithm whose solutions were on average very close to the optimal ones. In our computational experiments we studied the placement of sensors on 187 candidate bus routes. We considered the coverage provided by 10 up to 60 sensors

    Location and design of a competitive facility for profit maximisation

    Get PDF
    A single facility has to be located in competition with fixed existing facilities of similar type. Demand is supposed to be concentrated at a finite number of points, and consumers patronise the facility to which they are attracted most. Attraction is expressed by some function of the quality of the facility and its distance to demand. For existing facilities quality is fixed, while quality of the new facility may be freely chosen at known costs. The total demand captured by the new facility generates income. The question is to find that location and quality for the new facility which maximises the resulting profits. It is shown that this problem is well posed as soon as consumers are novelty oriented, i.e. attraction ties are resolved in favor of the new facility. Solution of the problem then may be reduced to a bicriterion maxcovering-minquantile problem for which solution methods are known. In the planar case with Euclidean distances and a variety of attraction functions this leads to a finite algorithm polynomial in the number of consumers, whereas, for more general instances, the search of a maximal profit solution is reduced to solving a series of small-scale nonlinear optimisation problems. Alternative tie-resolution rules are finally shown to result in ill-posed problems.Dirección General de Enseñanza Superio

    The Elderly Centre Location Problem

    Get PDF
    © The Operational Research Society 2020. This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the Operational Research Society on 12 Feb 2020, available online: https://doi.org/10.1080/01605682.2020.1718020.Increased human life expectancy combined with declining birth rates around the globe has led to ageing populations, particularly in the developed world. This phenomenon brings about increased dependency ratios and calls for setting new policies for the elderly citizens. This comprises the provision of a set of life-enhancing services in an accessible and equitable way. In this paper, we consider a multi-period problem of locating senior centres offering these services to the elderly population against budget constraints and capacity limitations. We assume that the attractiveness of facilities to elderlies is inversely proportional with the travel time to access these facilities. Both consistent and inconsistent versions of the problem are considered, aiming at identifying the set of facilities to operate in each region at each period, the service type(s) to be offered and the allocation of budget in each period to location and operation of facilities. A mixed integer mathematical programming model is presented, an efficient iterated local search procedure is proposed and managerial insights are provided.Peer reviewedFinal Accepted Versio

    Selecting the best locations for data centers in resilient optical grid/cloud dimensioning

    Get PDF
    For optical grid/cloud scenarios, the dimensioning problem comprises not only deciding on the network dimensions (i.e., link bandwidths), but also choosing appropriate locations to install server infrastructure (i.e., data centers), as well as determining the amount of required server resources (for storage and/or processing). Given that users of such grid/cloud systems in general do not care about the exact physical locations of the server resources, a degree of freedom arises in choosing for each of their requests the most appropriate server location. We will exploit this anycast routing principle (i.e., source of traffic is given, but destination can be chosen rather freely) also to provide resilience: traffic may be relocated to alternate destinations in case of network/server failures. In this study, we propose to jointly optimize the link dimensioning and the location of the servers in an optical grid/cloud, where the anycast principle is applied for resiliency against either link or server node failures. While the data center location problem has some resemblance with either the classical p-center or k-means location problems, the anycast principle makes it much more difficult due to the requirement of link disjoint paths for ensuring grid resiliency

    p-facility Huff location problem on networks

    Get PDF
    The p-facility Huff location problem aims at locating facilities on a competitive environment so as to maximize the market share. While it has been deeply studied in the field of continuous location, in this paper we study the p-facility Huff location problem on networks formulated as a Mixed Integer Nonlinear Programming problem that can be solved by a branch-and-bound algorithm. We propose two approaches for the initialization and division of subproblems, the first one based on the straightforward idea of enumerating every possible combination of p edges of the network as possible locations, and the second one defining sophisticated data structures that exploit the structure of the combinatorial and continuous part of the problem. Bounding rules are designed using DC (difference of convex) and Interval Analysis tools. In our computational study we compare the two approaches on a battery of 21 networks and show that both of them can handle problems for p ≤ 4 in reasonable computing time.Ministerio de Economía y CompetitividadJunta de AndalucíaHungarian National Research, Development and Innovation OfficeInformation and Communication Technologies COS

    Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

    Get PDF
    Abstract:Wind energy uptake in South Africa is significantly increasing both at the micro‐ and macro‐level and the possibility of embedded generation cannot be undermined considering the state of electricity supply in the country. This study identifies a wind hotspot site in the Eastern Cape province, performs an in silico deployment of three utility‐scale wind turbines of 60 m hub height each from different manufacturers, develops machine learning models to forecast very short‐term power production of the three wind turbine generators (WTG) and investigates the feasibility of embedded generation for a potential livestock industry in the area. Windographer software was used to characterize and simulate the net output power from these turbines using the wind speed of the potential site. Two hybrid models of adaptive neurofuzzy inference system (ANFIS) comprising genetic algorithm and particle swarm optimization (PSO) each for a turbine were developed to forecast very short‐term power output. The feasibility of embedded generation for typical medium‐scale agricultural industry was investigated using a weighted Weber facility location model. The analytical hierarchical process (AHP) was used for weight determination. From our findings, the WTG‐1 was selected based on its error performance metrics (root mean square error of 0.180, mean absolute SD of 0.091 and coefficient of determination of 0.914 and CT = 702.3 seconds) in the optimal model (PSO‐ANFIS). Criteria were ranked based on their order of significance to the agricultural industry as proximity to water supply, labour availability, power supply and road network. Also, as a proof of concept, the optimal location of the industrial facility relative to other criteria was X = 19.24 m, Y = 47.11 m. This study reveals the significance of resource forecasting and feasibility of embedded generation, thus improving the quality of preliminary resource assessment and facility location among site developers
    corecore