655 research outputs found

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations

    Applications of MEMS Gyroscope for Human Gait Analysis

    Get PDF
    After decades of development, quantitative instruments for human gait analysis have become an important tool for revealing underlying pathologies manifested by gait abnormalities. However, the gold standard instruments (e.g., optical motion capture systems) are commonly expensive and complex while needing expert operation and maintenance and thereby be limited to a small number of specialized gait laboratories. Therefore, in current clinical settings, gait analysis still mainly relies on visual observation and assessment. Due to recent developments in microelectromechanical systems (MEMS) technology, the cost and size of gyroscopes are decreasing, while the accuracy is being improved, which provides an effective way for qualifying gait features. This chapter aims to give a close examination of human gait patterns (normal and abnormal) using gyroscope-based wearable technology. Both healthy subjects and hemiparesis patients participated in the experiment, and experimental results show that foot-mounted gyroscopes could assess gait abnormalities in both temporal and spatial domains. Gait analysis systems constructed of wearable gyroscopes can be more easily used in both clinical and home environments than their gold standard counterparts, which have few requirements for operation, maintenance, and working environment, thereby suggesting a promising future for gait analysis

    Multi-Sensor Based Online Attitude Estimation and Stability Measurement of Articulated Heavy Vehicles.

    Get PDF
    Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy

    Kernel-based fault diagnosis of inertial sensors using analytical redundancy

    Get PDF
    Kernel methods are able to exploit high-dimensional spaces for representational advantage, while only operating implicitly in such spaces, thus incurring none of the computational cost of doing so. They appear to have the potential to advance the state of the art in control and signal processing applications and are increasingly seeing adoption across these domains. Applications of kernel methods to fault detection and isolation (FDI) have been reported, but few in aerospace research, though they offer a promising way to perform or enhance fault detection. It is mostly in process monitoring, in the chemical processing industry for example, that these techniques have found broader application. This research work explores the use of kernel-based solutions in model-based fault diagnosis for aerospace systems. Specifically, it investigates the application of these techniques to the detection and isolation of IMU/INS sensor faults – a canonical open problem in the aerospace field. Kernel PCA, a kernelised non-linear extension of the well-known principal component analysis (PCA) algorithm, is implemented to tackle IMU fault monitoring. An isolation scheme is extrapolated based on the strong duality known to exist between probably the most widely practiced method of FDI in the aerospace domain – the parity space technique – and linear principal component analysis. The algorithm, termed partial kernel PCA, benefits from the isolation properties of the parity space method as well as the non-linear approximation ability of kernel PCA. Further, a number of unscented non-linear filters for FDI are implemented, equipped with data-driven transition models based on Gaussian processes - a non-parametric Bayesian kernel method. A distributed estimation architecture is proposed, which besides fault diagnosis can contemporaneously perform sensor fusion. It also allows for decoupling faulty sensors from the navigation solution

    Prototyping a new car semi-active suspension by variational feedback controller

    Get PDF
    New suspension systems electronically controlled are presented and mounted on board of a real car. The system consists of variable semi-active magneto-rheological dampers that are controlled through an electronic unit that is designed on the basis of a new optimal theoretical control, named VFC-Variational Feedback Controller. The system has been mounted on board of a BMW Series 1 car, and a set of experimental tests have been conducted in real driving conditions. The VFC reveals, because of its design strategy, to be able to enhance simultaneously both the comfort performance as well as the handling capability of the car. Preliminary comparisons with several industrially control methods adopted in the automotive field, among them skyhook and groundhook, show excellent results

    Towards IMU-based Full-body Motion Estimation of Rough Terrain Mobile Manipulators

    Get PDF
    For navigation or pose estimation, strap-down Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) are widely used in all types of mobile devices and applications, from mobile phones to cars and heavy-duty Mobile Working Machines (MWM). This thesis is a summary of work focus on the utilization of IMUs for state estimation of MWM. Inertial sensor-based technology offers an alternative to the traditional solution, since it can significantly decrease the system cost and improve its robustness. For covering the research topic of whole-body estimation with IMUs, five publications focus on the development of novel algorithms, which use sensor fusion or rotary IMU theory to estimate or calculate the states of MWM. The test-platforms are also described in detail. First, we used low-cost IMUs installed on the surface of a hydraulic arm to estimate the joint state. These robotic arms are installed on a floating base, and the joints of the arms rotate in a two-dimensional (2D) plane. The novel algorithm uses an Extended Kalman Filter (EKF) to fuse the output of the gyroscopes and the accelerometers, with gravity as the reference. Second, a rotary gyroscope is mounted on a grasper of a crane, and the rotary gyroscope theory is implemented to decrease the drift of the angular velocity measurement. Third, low-cost IMUs are attached to the wheels and the bogie test bed, and the realization of IMU-based wheel odometry is investigated. Additionally, the rotary gyroscope provides information about the roll and yaw attitude for the test bed. Finally, we used an industry grade IMU fuse with the output of wheel odometry to estimate the position and attitude of the base for an MWM moving on slippery ground. One of the main aims of this research study is to estimate the states of an MWM only using IMU sensors. The research achievements indicate this approach is promising. However, the observability of IMU in the yaw direction of the navigation frame is limited so it is difficult to estimate the yaw angle of the rotation plane for the robotic arm when only using IMUs, to ensure the long-term reliable yaw angle and position of the vehicle base, external information might also be needed. When applying the rotary IMU theory, minimization of the power supply for the rotation device is still a challenge. This research study demonstrates that IMUs can be low-cost and reliable replacements for traditional sensors in joint angle measurement and in the wheel rotation angle for vehicles, among other applications. An IMU can also provide a robust state for a vehicle base in a challenging environment. These achievements will benefit future developments of MWMs in remote control and autonomous operations

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    Few-shot Domain Adaptation for IMU Denoising

    Full text link
    Different application scenarios will cause IMU to exhibit different error characteristics which will cause trouble to robot application. However, most data processing methods need to be designed for specific scenario. To solve this problem, we propose a few-shot domain adaptation method. In this work, a domain adaptation framework is considered for denoising the IMU, a reconstitution loss is designed to improve domain adaptability. In addition, in order to further improve the adaptability in the case of limited data, a few-shot training strategy is adopted. In the experiment, we quantify our method on two datasets (EuRoC and TUM-VI) and two real robots (car and quadruped robot) with three different precision IMUs. According to the experimental results, the adaptability of our framework is verified by t-SNE. In orientation results, our proposed method shows the great denoising performance
    corecore