12 research outputs found

    Agent Based Test and Repair of Distributed Systems

    Get PDF
    This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities. Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. An experimental solution is presented, and future developments of the proposed approach are explore

    Agent Based Test and Repair of Distributed Systems

    Get PDF
    This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities. Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. An experimental solution is presented, and future developments of the proposed approach are explored

    Zero-maintenance of electronic systems: Perspectives, challenges, and opportunities

    Get PDF
    Self-engineering systems that are capable of repairing themselves in-situ without the need for human decision (or intervention) could be used to achieve zero-maintenance. This philosophy is synonymous to the way in which the human body heals and repairs itself up to a point. This article synthesises issues related to an emerging area of self-healing technologies that links software and hardware mitigations strategies. Efforts are concentrated on built-in detection, masking and active mitigation that comprises self-recovery or self-repair capability, and has a focus on system resilience and recovering from fault events. Design techniques are critically reviewed to clarify the role of fault coverage, resource allocation and fault awareness, set in the context of existing and emerging printable/nanoscale manufacturing processes. The qualitative analysis presents new opportunities to form a view on the research required for a successful integration of zero-maintenance. Finally, the potential cost benefits and future trends are enumerated

    OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY

    Get PDF
    ABSTRACT Title of Dissertation: OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY Zhen Shi, Doctor of Philosophy, 2004 Dissertation directed by: Associate Professor Peter A. Sandborn Department of Mechanical Engineering For electronic systems it is not uncommon for 60% or more of the recurring cost to be associated with testing. Performing tradeoffs associated with where in a process to test and what level of test, diagnosis and rework to perform are key to optimizing the cost and yield of an electronic system's assembly. In this dissertation, a methodology that uses a real-coded genetic algorithm has been developed to minimize the yielded cost of electronic products by optimizing the locations of test, diagnosis and rework operations and their characteristics. This dissertation presents a test, diagnosis, and rework analysis model for use in electronic systems assembly. The approach includes a model of functional test operations characterized by fault coverage, false positives, and defects introduced in test; in addition, rework and diagnosis operations (diagnostic test) have variable success rates and their own defect introduction mechanisms. The model accommodates multiple rework attempts on a product instance. For use in practical assembly processes, the model has been extended by defining a general form of the relationship between test cost and fault coverage. The model is applied within a framework for optimizing the location(s) and characteristics (fault coverage/test cost and rework attempts) of Test/Diagnosis/Rework (TDR) operations in a general assembly process. A new search algorithm called Waiting Sequence Search (WSS) is applied to traverse a general process flow to perform the cumulative calculation of a yielded cost objective function. Real-Coded Genetic Algorithms (RCGAs) are used to perform a multi-variable optimization that minimizes yielded cost. Several simple cases are analyzed for validation and general complex process flows are used to demonstrate the applicability of the algorithm. A real multichip module (MCM) manufacturing and assembly process is used to demonstrate that the optimization methodology developed in this dissertation can find test and rework solutions that have lower yielded cost than solutions calculated by manually choosing the test strategies and characteristics. The optimization methodology with Monte Carlo methods included for the process flow under uncertain inputs is also addressed in this dissertation. It is anticipated that this research will improve the ability of manufacturing engineers to place TDR operations in a process flow. The ability to optimize the TDR operations can also be used as a feedback to a Design for Test (DFT) analysis of the electronic systems showing which portion of the system should be redesigned to accommodate testing for a higher level of fault coverage, and where there is less need for test

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Defect-based testing of LTS digital circuits

    Get PDF
    A Defect-Based Test (DBT) methodology for Superconductor Electronics (SCE) is presented in this thesis, so that commercial production and efficient testing of systems can be implemented in this technology in the future. In the first chapter, the features and prospects for SCE have been presented. The motivation for this research and the outline of the thesis were also described in Chapter 1. It has been shown that high-end applications such as Software-Defined Radio (SDR) and petaflop computers which are extremely difficult to implement in top-of-the-art semiconductor technologies can be realised using SCE. But, a systematic structural test methodology had yet to be developed for SCE and has been addressed in this thesis. A detailed introduction to Rapid Single-Flux Quantum (RSFQ) circuits was presented in Chapter 2. A Josephson Junction (JJ) was described with associated theory behind its operation. The JJ model used in the simulator used in this research work was also presented. RSFQ logic with logic protocols as well as the design and implementation of an example D-type flip-flop (DFF) was also introduced. Finally, advantages and disadvantages of RSFQ circuits have been discussed with focus on the latest developments in the field. Various techniques for testing RSFQ circuits were discussed in Chapter 3. A Process Defect Monitor (PDM) approach was presented for fabrication process analysis. The presented defect-monitor structures were used to gather measurement data, to find the probability of the occurrence of defects in the process which forms the first step for Inductive Fault Analysis (IFA). Results from measurements on these structures were used to create a database for defects. This information can be used as input for performing IFA. "Defect-sprinkling" over a fault-free circuit can be carried out according to the measured defect densities over various layers. After layout extraction and extensive fault simulation, the resulting information will indicate realistic faults. In addition, possible Design-for-Testability (DfT) schemes for monitoring Single-Flux Quantum (SFQ) pulses within an RSFQ circuit has also been discussed in Chapter 3. The requirement for a DfT scheme is inevitable for RSFQ circuits because of their very high frequency of operation and very low operating temperature. It was demonstrated how SFQ pulses can be monitored at an internal node of an SCE circuit, introducing observability using Test-Point Insertion (TPI). Various techniques were discussed for the introduction of DfT and to avoid the delay introduced by the DfT structure if it is required. The available features in the proposed design for customising the detector make it attractive for a detailed DBT of RSFQ circuits. The control of internal nodes has also been illustrated using TPI. The test structures that were designed and implemented to determine the occurrence of defects in the processes can also be used to locate the position for the insertion of the above mentioned DfT structures

    Aeronautical engineering: A continuing bibliography with indexes (supplement 318)

    Get PDF
    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Wireless and conventional electrochemiluminescence for analytical applications

    Get PDF
    Electrochemiluminescence (ECL) or alternatively electrogenerated chemiluminescence is a light-emitting process brought about by electron-transfer reactions. ECL can occur via two pathways namely, ion annihilation and coreactant pathway. Coreactant ECL generation predominates over annihilation pathway due to the ease of ECL generation in aqueous solution. The discovery of ECL emission in aqueous media has led to major applications in analytical chemistry, especially in the field of biosensing, that is, immunoassays and DNA-probe assays. Thus, the scope of this work was to develop a simple, sensitive ECL immunosensor for cardiac injury and to study and present newly fabricated platforms for analytical applications by using conventional and bipolar ECL as detection mechanism. Herein, two types of electrodes were investigated, that is, thin film electrodes made up of carbon micro-particles and three-dimensional (3D) printed electrodes made up of titanium alloy (Ti-6AI-4V) powder. The generation of ECL at these electrodes was based on two approaches, that is, ECL generated by conventional electrochemistry and ECL generation based on bipolar or wireless electrochemistry. Firstly, the conductivity of the thin film electrodes as well as their ability to generate ECL was investigated. The obtained results revealed that the films exhibited very low conductivity (65% (by volume) carbon particles using [Ru(bpy)3]2+ as the luminophore and tripropylamine as the coreactant, at an electric field of 14 V cm−1. A simple additive 3D printing technique based on selective laser melting (SLM) technology was used to fabricate 1 cm2 footprint 3D-printed titanium electrodes. The 3D-printed structures were characterised topographically and electrochemically by scanning electron microscopy and cyclic voltammetry, respectively. An electrochemical surface modification method was used to functionalise the surface of the 3D titanium electrodes with a thin gold layer which significantly enhanced the dynamics of heterogeneous electron transfer. Despite the slow rate of heterogeneous electron transfer at the bare 3D titanium electrodes, significant ECL was generated and the intensity increased with increasing scan rate. The obtained results suggest that it’s possible to fabricate customisable electrodes with control over the morphology, size, and performance, thus opens up exciting new possibilities for specific functions and studies like chemical sensing and biology, respectively. Secondly, the thesis focused on the synthesis, characterisation and application of an interesting ECL luminophore, ruthenium (II) (bis-2,2-bipyridyl)-2(4-carboxylphenyl) imidazo[4,5-f][1,10]phenanthroline [Ru(bpy)2(picCOOH)]2+. The luminophore was found to exhibit impressive electrochemical and photophysical properties, and for this reason, was covalently coupled to a secondary antibody via NHS/EDC for employment as ECL emitters in the fabrication of a sandwich-type immunosensor for the detection of cardiac troponin I, an important biomarker for cardiac injury. The ECL immunosensor was fabricated by the assembly of a new custom-made primary antibody with a carboxylic acid-terminated alkanethiol modified gold electrode. The primary antibody modified gold electrode was first treated with 1% bovine serum albumin and thereafter it was reacted with various concentrations of human cardiac troponin-I, followed by the introduction of the secondary antibody dye-conjugate. In the presence of the tripropylamine coreactant, an increase in ECL signal was observed. The ECL intensity versus the concentration of cardiac troponin I was linear in the range from 0.001 pg mL-1 to 0.50 pg mL-1 with an extremely low detection limit of 0.03 pg mL-1 (SD, n=3). Furthermore, this immunoassay was extended to a bipolar electrochemical system so that wireless detection of cTnI could be realised. Comparison studies were also carried out to study the difference in ECL intensity between conventional and bipolar ECL approach
    corecore