15,627 research outputs found

    A distance-limited continuous location-allocation problem for spatial planning of decentralized systems

    Get PDF
    We introduce a new continuous location-allocation problem where the facilities have both a fixed opening cost and a coverage distance limitation. The problem has wide applications especially in the spatial planning of water and/or energy access networks where the coverage distance might be associated with the physical loss constraints. We formulate a mixed integer quadratically constrained problem (MIQCP) under the Euclidean distance setting and present a three-stage heuristic algorithm for its solution: In the first stage, we solve a planar set covering problem (PSCP) under the distance limitation. In the second stage, we solve a discrete version of the proposed problem where the set of candidate locations for the facilities is formed by the union of the set of demand points and the set of locations in the PSCP solution. Finally, in the third stage, we apply a modified Weiszfeld's algorithm with projections that we propose to incorporate the coverage distance component of our problem for fine-tuning the discrete space solutions in the continuous space. We perform numerical experiments on three example data sets from the literature to demonstrate the performance of the suggested heuristic method. © 2017 Elsevier Lt

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Modeling Producer Decisions on Land Use in Spatial Continuum

    Get PDF
    The paper describes how stochastic optimization techniques can be used to model profit maximizing producer behavior in a spatial continuum. The main methodological issues to be addressed are, first, that the representation of optimal allocations in a spatial continuum naturally lead to models that contain integrals over space, and the second that the resulting model tends to have a multi-level structure, i.e. requires solving nested optimization problems because it should combine the profit maximization by individual producers with market clearing at regional level. We specify four regional model that may illustrate the approach. The first determines the optimal output level for factories that emit pollutants which reduce the crop output of neighboring farmers. The main issue is to compute the associated level of compensation to be paid by the factories to the farmers. The second model deals with optimal zoning. It computes the optimal crop routing for farmers who can choose to sell their crop to factories situated at given locations. This is an optimization problem in functional space, which can be reformulated as a dual stochastic optimization problem. In the their model, the farmer has the possibility of routing his crop along different roads or distribution nodes to the various factories for processing. It can describe the optimal choice of distribution centers at given locations, around plants or cities, and produces optimal boundaries for the zones that supply to or buy from these centers. The fourth model deals with the problem optimal land consolidation, distinguishes between consolidation processes with and without side-payments. To each of these four models we associate a decentralized, stochastic quasi-gradient (SQG-)procedure for attaining the global) optimum, which has a natural interpretation as a device for decentralized adaptive planning

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore