117,488 research outputs found

    A video display interface for the LORAN-C navigation receiver development system

    Get PDF
    A microprocessor-based development system was designed and fabricated for prototype test of navigation receiver designs. During use of this system in the development of low-cost LORAN-C receiver/processor concepts, the limitations of the integral KIM-1 display were severely felt. It was to augment this numerical display that the video character display was produced. The circuit design presented meets the need for a flexible-format display capable of driving a small standard video monitor with only minimal demands upon microprocessor memory and MPU cycles

    Design and implementation of a medium speed communications interface and protocol for a low cost, refreshed display computer

    Get PDF
    The design and implementation of hardware and software systems involved in using a 40,000 bit/second communication line as the connecting link between an IMLAC PDS 1-D display computer and a Univac 1108 computer system were described. The IMLAC consists of two independent processors sharing a common memory. The display processor generates the deflection and beam control currents as it interprets a program contained in the memory; the minicomputer has a general instruction set and is responsible for starting and stopping the display processor and for communicating with the outside world through the keyboard, teletype, light pen, and communication line. The processing time associated with each data byte was minimized by designing the input and output processes as finite state machines which automatically sequence from each state to the next. Several tests of the communication link and the IMLAC software were made using a special low capacity computer grade cable between the IMLAC and the Univac

    Fault-tolerant computer architecture based on INMOS transputer processor

    Get PDF
    Redundant processing was used for several years in mission flight systems. In these systems, more than one processor performs the same task at the same time but only one processor is actually in real use. A fault-tolerance computer architecture based on the features provided by INMOS Transputers is presented. The Transputer architecture provides several communication links that allow data and command communication with other Transputers without the use of a bus. Additionally the Transputer allows the use of parallel processing to increase the system speed considerably. The processor architecture consists of three processors working in parallel keeping all the processors at the same operational level but only one processor is in real control of the process. The design allows each Transputer to perform a test to the other two Transputers and report the operating condition of the neighboring processors. A graphic display was developed to facilitate the identification of any problem by the user

    Development of user guidelines for ECAS display design, volume 1

    Get PDF
    Experiment computer application software (ECAS) display design and command usage guidelines were developed, which if followed by spacelab experiments, would standardize methods and techniques for data presentation and commanding via ECAS. These guidelines would provide some commonality among experiments which would enhance crew training and flight operations. The guidelines are applicable to all onboard experiment displays, whether allocated by ECAS or a dedicated experiment processor. A brief description of the spacelab data display system characteristics and of the services provided by the experiment computer operating system is included. Guidelines concerning data presentation and layout of alphanumeric and graphic information are presented along with guidelines concerning keyboard commanding and command feedback

    Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    Get PDF
    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described

    Formulation of consumables management models. Volume 2: Mission planning processor user guide

    Get PDF
    A user guide for the MPP (Mission Planning Processor) is presented. The MPP is used in the evaluation of particular missions, with appropriate display and storage of related consumables data. Design goals are accomplished by the use of an on-line/demand mode computer terminal Cathode Ray Tube Display. The process is such that the user merely adds specific mission/flight functions to a skeleton flight and/or alters the skeleton. The skeleton flight includes operational aspects from prelaunch through ground support equipment connect after rollout as required to place the STS (Space Transportation System) in a parking orbit, maintain the spacecraft and crew for the stated on-orbit period and return

    Adaptive Display Intensity Control Using Digital Signal Processor

    Get PDF
    One of the major cause of eye strain and other problems caused while watching video displays is the relative illumination between screen and its surrounding. This can be overcome by adjusting the brightness of screen with respect to surrounding light. The display systems with the human eye features like automatic intensity control under varying background luminance conditions add more challenge to design of display systems. The Adaptive Intensity Control can be achieved by varying the display intensity according to the background intensity level taking into account the comfort level of the user. In this paper, various parameters important for automatic intensity control design have been discussed and a new methodology based on look up table generated using experimental values has been devised by which the display intensity can be adaptively varied maintaining an adequate contrast ratio in real time mode. In this paper, Signal Processor based adaptive display intensity control of display intensity has been proposed

    Incubator Analyzer Using Bluetooth Android Display (Humidity & Air Flow)

    Full text link
    — Incubator Analyzer is a calibrator used to calibrate incubator temperature, mattress temperature, noise, humidity and airflow so that conditions in the baby incubator environment remain stable and within normal limits. The purpose of this study is to develop a system for sending data to android and data storage. "Incubator Analyzer Using Bluetooth Appear Android" has four parameters for measuring temperature, noise, humidity, and water flow. Using the Atmega328 microcontroller as a data processor, and the output results will be displayed on the LCD display and equipped with data transmission via bluetooth HC-05 displayed to Android with data storage. The moisture parameter detects humidity quite well where the biggest error is obtained at 1.28% DHT-22, the Ultrasound Sensor HC SR-04 can detect Air Flow with an error of 311.66% as measured by a comparison device. Incubator Design This analyzer is made portable to calibrate baby incubator tools

    Interactive digital signal processor

    Get PDF
    The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information

    Computer memories: the history of computer form

    Get PDF
    This paper looks at the computer as a truly global form. The similar beige boxes found in offices across the world are analysed from the perspective of design history rather than that of the history of science and technology. Through the exploration of an archive of computer manufacturer's catalogues and concurrent design texts, this paper examines the changes that have occurred in the production and consumption of the computer in the context of the workplace, from its inception as a room-sized mainframe operated through a console of flashing lights, to the personal computer as a 'universal' form, reproduced by many manufacturers. It shows how the computer in the past has been as diverse as any other product, and asks how and why it now appears as a standardised, sanitised object. In doing so our relationship with the office computer, past and present is explored, revealing a complex history of vicissitude.</p
    corecore