204 research outputs found

    Brain electrical activity discriminant analysis using Reproducing Kernel Hilbert spaces

    Get PDF
    A deep an adequate understanding of the human brain functions has been an objective for interdisciplinar teams of scientists. Different types of technological acquisition methodologies, allow to capture some particular data that is related with brain activity. Commonly, the more used strategies are related with the brain electrical activity, where reflected neuronal interactions are reflected in the scalp and obtained via electrode arrays as time series. The processing of this type of brain electrical activity (BEA) data, poses some challenges that should be addressed carefully due their intrinsic properties. BEA in known to have a nonstationaty behavior and a high degree of variability dependenig of the stimulus or responses that are being adressed..

    Spatio-spectral patterns based on stein kernel for EEG signal classification

    Get PDF
    El trastorno por déficit de atención con hiperactividad (TDAH) es un trastorno neurológico de inicio en la niñez que puede persistir en la adolescencia y la vida adulta, reduciendo la concentración, la memoria y la productividad. El principal inconveniente de las anomalías de la salud mental de este tipo es la técnica de diagnóstico tradicional, ya que se basa exclusivamente en una descripción sintomatológica sin considerar ningún dato biológico, lo que genera altas tasas de sobrediagnóstico. Para abordar el problema anterior, los investigadores clínicos están intentando extraer biomarcadores de TDAH a partir de señales electroencefalográficas (EEG) registradas. Entre los biomarcadores más comunes se encuentran la relación Theta / Beta y P300, de los cuales estudios recientes han demostrado una falta de importancia en las diferencias entre el TDAH y los sujetos de control. Además, otro gran desafío en el procesamiento del electroencefalograma viene dado por la sensibilidad de las señales, ya que pueden verse fácilmente afectadas por ruidos de fondo, artefactos musculares, movimientos de la cabeza y parpadeos que perjudican enormemente su calidad, lo que limita su introducción en aplicaciones del mundo real. Este trabajo propone una metodología de representación de señales de EEG para identificar discrepancias de respuestas inhibitorias en el sujeto, decodificar la estructura de datos y respaldar el diagnóstico de trastornos mentales. Para esto, primero desarrollamos un enfoque de extracción de características basado en los patrones espaciales comunes (CSP) de las señales de EEG para respaldar el diagnóstico de TDAH como se muestra en el capítulo 3. Luego, desarrollamos una metodología para la representación de señales de EEG que utiliza la similitud entre series de tiempo a través de sus matrices de covarianza en la variedad riemanniana de matrices semidefinitas positivas (PSD), utilizando la divergencia logdet de Jensen Bregman, el kernel de Stein y la alineación de kernel centrada (CKA) como una función de costo para realizar una optimización de filtros espaciales. Finalmente, en el capítulo 5 presentamos una metodología para el apoyo diagnóstico del TDAH. La propuesta implica el uso de los patrones espaciales óptimos desarrollados en el capítulo 4, una descomposición en los ritmos cerebrales y la decodificación discriminativa del capítulo 3. Las características subjetivas resultantes alimentaron un análisis discriminante lineal como herramienta de diagnóstico. La tasa de precisión alcanzada del 93% demuestra que el índice discriminativo basado en los patrones espaciales de stein supera a los biomarcadores convencionales en el diagnóstico de TDAH.Attention-Deficit/Hyperactivity Disorder (ADHD) is a childhood-onset neurological disorder that can persist in adolescence and adult life, reducing concentration, memory, and productivity. The main drawback with mental health abnormalities of this type is the traditional diagnostic technique. Since this is based exclusively on a symptomatological description without considering any biological data, leading to high overdiagnosis rates. To address the above problem, clinical researchers are attempting to extract ADHD biomarkers from recorded electroencephalographic (EEG) signals. Among the most common biomarkers are Theta/Beta Ratio and P300, of which recent studies have shown a lack of significance on the differences between ADHD and control subjects. Besides, another great challenge in EEG processing is given by the sensitivity of the signals, since they can be easily affected by background noise, muscle artifacts, head movements and flickering that greatly impair their quality, which limits its introduction into real world applications. This work proposes an EEG signal representation methodology for identifying subject-wise discrepancies of inhibitory responses, decoding the data structure, and supporting diagnosis of mental disorders. For this, first we develop a feature extraction approach based on the common spatial patterns (CSP) from EEG signals to support the ADHD diagnosis as show in chapter 3. Then, we develop a methodology for the representation of EEG signals that uses the similarity between time series through their covariance matrices in the Riemannian manifold of positive semidefinite matrices (PSD), using the logdet-divergence of Jensen Bregman, the Stein kernel, and Centered Kernel Alignment (CKA) as a cost function to perform a spatial filters optimization. Finally, in chapter 5 we present a methodology for the diagnostic support of ADHD. The proposal involves the use of the optimal spatial patterns developed in chapter 4, a decomposition in brain rhythms, and the discriminative decoding of chapter 3. The resulting subject-wise features fed a linear discriminant analysis as the supported-diagnosis tool. Achieved 93% accuracy rate proves that the discriminative index based on the stein spatial patterns outperforms conventional biomarkers in the ADHD diagnosis.MaestríaMagíster en Ingeniería EléctricaContents 1 List of Symbols and Abbreviations 6 1.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Abbrevations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Introduction 8 2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . 12 3 CSP-based discriminative capacity index from EEG 13 3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Common Spatial Patterns . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Discriminative decoding of CSP . . . . . . . . . . . . . . . . 14 3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Synthetic EEG records . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Real EEG records . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Proposed scheme for feature extraction . . . . . . . . . . . . 19 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Discriminative decoding on simulated data . . . . . . . . . . 19 3.3.2 Feature extraction by discriminative decoding . . . . . . . . . 21 3.3.3 Diagnostic support of ADHD . . . . . . . . . . . . . . . . . 21 4 Multiple Kernel Stein Spatial Patterns 24 4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 EEG Decomposition . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 Time-Series Similarity through the Stein Kernel for PSD Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Spatial Filter Optimization Using Centered Kernel Alignment 27 4.1.4 Assembling of Multiple Kernel Representations . . . . . . . . 27 4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Dataset IIa from BCI Competition IV (BCICIV2a) . . . . . . 28 4.2.2 Proposed BCI Methodology . . . . . . . . . . . . . . . . . . 29 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 Performance Results . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 Model Interpretability . . . . . . . . . . . . . . . . . . . . . 33 5 SSP-based discriminative capacity index from EEG supporting ADHD di agnosis 37 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.1 Brain rhythms EEG decomposition . . . . . . . . . . . . . . 38 5.1.2 Stein Spatial Patterns (SSP) . . . . . . . . . . . . . . . . . . 39 5.1.3 Discriminative decoding of SSP . . . . . . . . . . . . . . . . 39 5.1.4 Generative-supervised feature relevance . . . . . . . . . . . . 40 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Conclusions 45 6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Improved Motor Imagery Classification Using Adaptive Spatial Filters Based on Particle Swarm Optimization Algorithm

    Full text link
    As a typical self-paced brain-computer interface (BCI) system, the motor imagery (MI) BCI has been widely applied in fields such as robot control, stroke rehabilitation, and assistance for patients with stroke or spinal cord injury. Many studies have focused on the traditional spatial filters obtained through the common spatial pattern (CSP) method. However, the CSP method can only obtain fixed spatial filters for specific input signals. Besides, CSP method only focuses on the variance difference of two types of electroencephalogram (EEG) signals, so the decoding ability of EEG signals is limited. To obtain more effective spatial filters for better extraction of spatial features that can improve classification to MI-EEG, this paper proposes an adaptive spatial filter solving method based on particle swarm optimization algorithm (PSO). A training and testing framework based on filter bank and spatial filters (FBCSP-ASP) is designed for MI EEG signal classification. Comparative experiments are conducted on two public datasets (2a and 2b) from BCI competition IV, which show the outstanding average recognition accuracy of FBCSP-ASP. The proposed method has achieved significant performance improvement on MI-BCI. The classification accuracy of the proposed method has reached 74.61% and 81.19% on datasets 2a and 2b, respectively. Compared with the baseline algorithm (FBCSP), the proposed algorithm improves 11.44% and 7.11% on two datasets respectively. Furthermore, the analysis based on mutual information, t-SNE and Shapley values further proves that ASP features have excellent decoding ability for MI-EEG signals, and explains the improvement of classification performance by the introduction of ASP features.Comment: 25 pages, 8 figure

    An Approach of One-vs-Rest Filter Bank Common Spatial Pattern and Spiking Neural Networks for Multiple Motor Imagery Decoding

    Get PDF
    Motor imagery (MI) is a typical BCI paradigm and has been widely applied into many aspects (e.g. brain-driven wheelchair and motor function rehabilitation training). Although significant achievements have been achieved, multiple motor imagery decoding is still unsatisfactory. To deal with this challenging issue, firstly, a segment of electroencephalogram was extracted and preprocessed. Secondly, we applied a filter bank common spatial pattern (FBCSP) with one-vs-rest (OVR) strategy to extract the spatio-temporal-frequency features of multiple MI. Thirdly, the F-score was employed to optimise and select these features. Finally, the optimized features were fed to the spiking neural networks (SNN) for classification. Evaluation was conducted on two public multiple MI datasets (Dataset IIIa of the BCI competition III and Dataset IIa of the BCI competition IV). Experimental results showed that the average accuracy of the proposed framework reached up to 90.09% (kappa: 0.868) and 81.33% (kappa: 0.751) on the two public datasets, respectively. The achieved performance (accuracy and kappa) was comparable to the best one of the compared methods. This study demonstrated that the proposed method can be used as an alternative approach for multiple MI decoding and it provided a potential solution for online multiple MI detection
    corecore