14,854 research outputs found

    Pilot investigation of remote sensing for intertidal oyster mapping in coastal South Carolina: a methods comparison

    Get PDF
    South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages

    Estimation of Default Probabilities with Support Vector Machines

    Get PDF
    Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to estimate default probabilities of German firms. Our analysis is based on the Creditreform database. The results reveal that the most important eight predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Based on the performance measures, the SVM tool can predict a firms default risk and identify the insolvent firm more accurately than the benchmark logit model. The sensitivity investigation and a corresponding visualization tool reveal that the classifying ability of SVM appears to be superior over a wide range of the SVM parameters. Based on the nonparametric Nadaraya-Watson estimator, the expected returns predicted by the SVM for regression have a significant positive linear relationship with the risk scores obtained for classification. This evidence is stronger than empirical results for the CAPM based on a linear regression and confirms that higher risks need to be compensated by higher potential returns.Support Vector Machine, Bankruptcy, Default Probabilities Prediction, Expected Profitability, CAPM.

    Using item response theory to explore the psychometric properties of extended matching questions examination in undergraduate medical education

    Get PDF
    BACKGROUND: As assessment has been shown to direct learning, it is critical that the examinations developed to test clinical competence in medical undergraduates are valid and reliable. The use of extended matching questions (EMQ) has been advocated to overcome some of the criticisms of using multiple-choice questions to test factual and applied knowledge. METHODS: We analysed the results from the Extended Matching Questions Examination taken by 4th year undergraduate medical students in the academic year 2001 to 2002. Rasch analysis was used to examine whether the set of questions used in the examination mapped on to a unidimensional scale, the degree of difficulty of questions within and between the various medical and surgical specialties and the pattern of responses within individual questions to assess the impact of the distractor options. RESULTS: Analysis of a subset of items and of the full examination demonstrated internal construct validity and the absence of bias on the majority of questions. Three main patterns of response selection were identified. CONCLUSION: Modern psychometric methods based upon the work of Rasch provide a useful approach to the calibration and analysis of EMQ undergraduate medical assessments. The approach allows for a formal test of the unidimensionality of the questions and thus the validity of the summed score. Given the metric calibration which follows fit to the model, it also allows for the establishment of items banks to facilitate continuity and equity in exam standards

    Default Predictors and Credit Scoring Models for Retail Banking

    Get PDF
    This paper develops a specification of the credit scoring model with high discriminatory power to analyze data on loans at the retail banking market. Parametric and non- parametric approaches are employed to produce three models using logistic regression (parametric) and one model using Classification and Regression Trees (CART, nonparametric). The models are compared in terms of efficiency and power to discriminate between low and high risk clients by employing data from a new European Union economy. We are able to detect the most important characteristics of default behavior: the amount of resources the client has, the level of education, marital status, the purpose of the loan, and the number of years the client has had an account with the bank. Both methods are robust: they found similar variables as determinants. We therefore show that parametric as well as non-parametric methods can produce successful models. We are able to obtain similar results even when excluding a key financial variable (amount of own resources). The policy conclusion is that socio-demographic variables are important in the process of granting credit and therefore such variables should not be excluded from credit scoring model specification.credit scoring, discrimination analysis, banking sector, pattern recognition, retail loans, CART, European Union

    Predicting failure in the commercial banking industry

    Get PDF
    The ability to predict bank failure has become much more important since the mortgage foreclosure crisis began in 2007. The model proposed in this study uses proxies for the regulatory standards embodied in the so-called CAMELS rating system, as well as several local or national economic variables to produce a model that is robust enough to forecast bank failure for the entire commercial bank industry in the United States. This model is able to predict failure (survival) accurately for commercial banks during both the Savings and Loan crisis and the mortgage foreclosure crisis. Other important results include the insignificance of several factors proposed in the literature, including total assets, real price of energy, currency ratio and the interest rate spread.bank failure; banking crises; CAMELS ratings

    Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning

    Get PDF
    Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has the potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on the power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/nondiagnostic, glioma/nonglioma, tumor/injury/normal categories and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.Comment: See the final version published in Frontiers in Oncology here: https://www.frontiersin.org/articles/10.3389/fonc.2018.00240/ful
    corecore