2,119 research outputs found

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ‘big data’ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function

    Get PDF
    This paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can be summarized as follows: (i) it guarantees exponential stability in closed-loop operation, and (ii) the inverse control law is optimal since it minimizes the cost functional of the system. Numerical simulations demonstrate that the RWP is stabilized with the discrete-inverse optimal control approach via a CLF with different settling times as a function of the control gains. Furthermore, parametric uncertainties and comparisons with nonlinear controllers such as passivity-based and Lyapunov-based approaches developed in the continuous-time domain have demonstrated the superiority of the proposed discrete control approach. All of these simulations have been implemented in the MATLAB software

    Quasi second-order methods for PDE-constrained forward and inverse problems

    Full text link
    La conception assistĂ©e par ordinateur (CAO), les effets visuels, la robotique et de nombreux autres domaines tels que la biologie computationnelle, le gĂ©nie aĂ©rospatial, etc. reposent sur la rĂ©solution de problĂšmes mathĂ©matiques. Dans la plupart des cas, des mĂ©thodes de calcul sont utilisĂ©es pour rĂ©soudre ces problĂšmes. Le choix et la construction de la mĂ©thode de calcul ont un impact important sur les rĂ©sultats et l'efficacitĂ© du calcul. La structure du problĂšme peut ĂȘtre utilisĂ©e pour crĂ©er des mĂ©thodes, qui sont plus rapides et produisent des rĂ©sultats qualitativement meilleurs que les mĂ©thodes qui n'utilisent pas la structure. Cette thĂšse prĂ©sente trois articles avec trois nouvelles mĂ©thodes de calcul s'attaquant Ă  des problĂšmes de simulation et d'optimisation contraints par des Ă©quations aux dĂ©rivĂ©es partielles (EDP). Dans le premier article, nous abordons le problĂšme de la dissipation d'Ă©nergie des solveurs fluides courants dans les effets visuels. Les solveurs de fluides sont omniprĂ©sents dans la crĂ©ation d'effets dans les courts et longs mĂ©trages d'animation. Nous prĂ©sentons un schĂ©ma d'intĂ©gration temporelle pour la dynamique des fluides incompressibles qui prĂ©serve mieux l'Ă©nergie comparĂ© aux nombreuses mĂ©thodes prĂ©cĂ©dentes. La mĂ©thode prĂ©sentĂ©e prĂ©sente une faible surcharge et peut ĂȘtre intĂ©grĂ©e Ă  un large Ă©ventail de mĂ©thodes existantes. L'amĂ©lioration de la conservation de l'Ă©nergie permet la crĂ©ation d'animations nettement plus dynamiques. Nous abordons ensuite la conception computationelle dont le but est d'exploiter l'outils computationnel dans le but d'amĂ©liorer le processus de conception. Plus prĂ©cisĂ©ment, nous examinons l'analyse de sensibilitĂ©, qui calcule les sensibilitĂ©s du rĂ©sultat de la simulation par rapport aux paramĂštres de conception afin d'optimiser automatiquement la conception. Dans ce contexte, nous prĂ©sentons une mĂ©thode efficace de calcul de la direction de recherche de Gauss-Newton, en tirant parti des solveurs linĂ©aires directs Ă©pars modernes. Notre mĂ©thode rĂ©duit considĂ©rablement le coĂ»t de calcul du processus d'optimisation pour une certaine classe de problĂšmes de conception inverse. Enfin, nous examinons l'optimisation de la topologie Ă  l'aide de techniques d'apprentissage automatique. Nous posons deux questions : Pouvons-nous faire de l'optimisation topologique sans maillage et pouvons-nous apprendre un espace de solutions d'optimisation topologique. Nous appliquons des reprĂ©sentations neuronales implicites et obtenons des rĂ©sultats structurellement sensibles pour l'optimisation topologique sans maillage en guidant le rĂ©seau neuronal pendant le processus d'optimisation et en adaptant les mĂ©thodes d'optimisation topologique par Ă©lĂ©ments finis. Notre mĂ©thode produit une reprĂ©sentation continue du champ de densitĂ©. De plus, nous prĂ©sentons des espaces de solution appris en utilisant la reprĂ©sentation neuronale implicite.Computer-aided design (CAD), visual effects, robotics and many other fields such as computational biology, aerospace engineering etc. rely on the solution of mathematical problems. In most cases, computational methods are used to solve these problems. The choice and construction of the computational method has large impact on the results and the computational efficiency. The structure of the problem can be used to create methods, that are faster and produce qualitatively better results than methods that do not use the structure. This thesis presents three articles with three new computational methods tackling partial differential equation (PDE) constrained simulation and optimization problems. In the first article, we tackle the problem of energy dissipation of common fluid solvers in visual effects. Fluid solvers are ubiquitously used to create effects in animated shorts and feature films. We present a time integration scheme for incompressible fluid dynamics which preserves energy better than many previous methods. The presented method has low overhead and can be integrated into a wide range of existing methods. The improved energy conservation leads to noticeably more dynamic animations. We then move on to computational design whose goal is to harnesses computational techniques for the design process. Specifically, we look at sensitivity analysis, which computes the sensitivities of the simulation result with respect to the design parameters to automatically optimize the design. In this context, we present an efficient way to compute the Gauss-Newton search direction, leveraging modern sparse direct linear solvers. Our method reduces the computational cost of the optimization process greatly for a certain class of inverse design problems. Finally, we look at topology optimization using machine learning techniques. We ask two questions: Can we do mesh-free topology optimization and can we learn a space of topology optimization solutions. We apply implicit neural representations and obtain structurally sensible results for mesh-free topology optimization by guiding the neural network during optimization process and adapting methods from finite element based topology optimization. Our method produces a continuous representation of the density field. Additionally, we present learned solution spaces using the implicit neural representation

    Stochastic Control for Cooperative Cyber-Physical Networking

    Get PDF
    Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb von Produktions- und Fertigungslinien, was zu einer stĂ€rker werdenden Verzahnung der physikalischen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen fĂŒhrt. Cyber-physische Systeme (CPS) spielen hierbei eine SchlĂŒsselrolle, indem sie sowohl die physikalischen als auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen UmgebungszustĂ€nde, Messwerte und Steuerbefehle ĂŒber ein Kommunikationsnetzwerk ausgetauscht werden. Die VerfĂŒgbarkeit von kostengĂŒnstigen GerĂ€ten und die Möglichkeit bereits existierende Infrastruktur zu nutzen sorgen dafĂŒr, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der Nutzung von Standard-Netzen sind jedoch auftretende DienstgĂŒte-Schwankungen, welche aus der gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und fĂŒr die Endsysteme in Form von sich Ă€ndernden Latenzen und Daten- und Paketverlustraten sichtbar werden. Regelkreise sind besonders anfĂ€llig fĂŒr DienstgĂŒte-Schwankungen, da sie typischerweise isochrone DatenĂŒbertragungen mit festen Latenzen benötigen, um die gewĂŒnschte RegelgĂŒte zu garantieren. FĂŒr die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man daher klassischerweise auf Lösungen, die diese Anforderungen erfĂŒllen. Diese Lösungen sind jedoch relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen benötigen oder ĂŒber komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren. Die vorliegende Arbeit prĂ€sentiert Ergebnisse des interdisziplinĂ€ren Forschungsprojekts CoCPN:Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um i) die ElastizitĂ€t von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage zu versetzen, mit den auftretenden DienstgĂŒte-Schwankungen umzugehen, und ii) das Netzwerk ĂŒber die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine verteilte Architektur fĂŒr CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfĂŒgbare Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen benötigt CoCPN dafĂŒr keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten ĂŒber den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den typischen Zusammenhang zwischen erreichbarer RegelgĂŒte und Senderate ausnutzt: die erreichbare RegelgĂŒte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden RegelgĂŒte kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden. In dieser Arbeit beschĂ€ftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die auf Basis der ĂŒber den CoCPN-Translator ausgetauschten Meta-Daten die notwendige ElastizitĂ€t liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-DienstgĂŒte zu reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur VerfĂŒgung gestellt wird, dass die Auswirkungen von Verzögerungen und Paketverlusten auf die RegelgĂŒte erfasst. Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt, dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus, dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte Erweiterung ist in der Lage, Änderungen der Netzwerk-DienstgĂŒte abzubilden und ist nicht auf eine bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschrĂ€nkt. ZusĂ€tzlich verzichtet unsere Erweiterung auf die in der Literatur ĂŒbliche Annahme, dass Quittungen fĂŒr empfangene Datenpakete stets fehlerfrei und mit vernachlĂ€ssigbarer Latenz ĂŒbertragen werden. Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften daher eine realistischere BerĂŒcksichtigung der Netzwerk-EinflĂŒsse auf die RegelgĂŒte. Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die RegelgĂŒte prĂ€diziert werden. Auf Basis dieser PrĂ€diktion können StellgrĂ¶ĂŸen dann mit Methoden der stochastischen modellprĂ€diktiven Regelung (stochastic model predictive control) berechnet werden. Unsere realistischere Betrachtung der Netzwerk-EinflĂŒsse auf die RegelgĂŒte fĂŒhrt hierbei zu einer gegenseitigen AbhĂ€ngigkeit von Regelung und SchĂ€tzung. Zur Berechnung der StellgrĂ¶ĂŸen muss der Regler den Zustand der Strecke aus den empfangenen Messungen schĂ€tzen. Die QualitĂ€t dieser SchĂ€tzungen hĂ€ngt von den berechneten StellgrĂ¶ĂŸen und deren Auswirkung auf die Regelstrecke ab. Umgekehrt beeinflusst die QualitĂ€t der SchĂ€tzungen aber maßgeblich die QualitĂ€t der StellgrĂ¶ĂŸen: Ist der SchĂ€tzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige AbhĂ€ngigkeit macht die Berechnung von optimalen StellgrĂ¶ĂŸen unmöglich und bedingt daher die Fokussierung auf das Erforschen von approximativen AnsĂ€tzen. Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren fĂŒr die stochastische modellprĂ€diktive Regelung ĂŒber Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System oft sogenannte multiple model-Algorithmen zur ZustandsschĂ€tzung verwendet werden, welche den geschĂ€tzten Zustand in Form einer Gaußmischdichte reprĂ€sentieren. Auf Basis dieses Zusammenhangs und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer KomplexitĂ€t zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser unterlagerten Regelgesetze lĂ€sst sich dabei als lineare Funktion genau einer der Komponenten der Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensĂ€tzliche Eigenschaften. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion, welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Systems, berechnen. Diese Trajektorie wird hierbei durch die PrĂ€diktion einer initialen ZustandsschĂ€tzung ĂŒber den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine signifikant höhere RegelgĂŒte erzielen können als verwandte AnsĂ€tze aus der Literatur. Der dritte Teil der vorliegenden Arbeit beschĂ€ftigt sich erneut mit dem hybriden System aus dem ersten Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten probabilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen bilden jedoch stets nur Ausschnitte ab und können nie exakt den "Zustand” des Netzwerks reprĂ€sentieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den Netzwerk-Modellen auf die zu erwartende RegelgĂŒte. Weiterhin gehen wir der Frage nach der Existenz von Reglern, die robust gegenĂŒber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen wir zunĂ€chst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-Unsicherheit im hybriden System aus dem ersten Teil manifestieren. FĂŒr solche polytopischen hybride System leiten wir dann eine sowohl notwendige als auch hinreichende StabilitĂ€tsbedingung her, was einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedingung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was die Anwendbarkeit der StabilitĂ€tsbedingung stark limitiert. Daher prĂ€sentieren wir eine hinreichende StabilitĂ€tsbedingung, die in polynomieller Zeit ĂŒberprĂŒft werden kann, da sie auf der ErfĂŒllbarkeit von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers, der die StabilitĂ€t des betrachteten polytopischen hybriden Systems garantiert, von der ErfĂŒllbarkeit einer Ă€hnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern erlaubt. Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen Anwendungen geteilt werden mĂŒssen. Wir demonstrieren, dass insbesondere das Zusammenspiel unserer modellprĂ€diktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlĂ€ssigen Betrieb der Regelkreise ohne unerwĂŒnschte Einbußen der RegelgĂŒte auch dann ermöglicht, wenn sich die Kommunikationsbedingungen plötzlich und unvorhergesehen Ă€ndern. Insgesamt stellt unsere Arbeit somit einen wichtigen Baustein auf dem Weg zu einem flĂ€chendeckenden Einsatz von Standard-Netzen als flexible und adaptive Basis fĂŒr industrielle CPS dar

    Disturbance Feedback Control for Industrial Systems:Practical Design with Robustness

    Get PDF

    Evolutionary squeaky wheel optimization: a new framework for analysis

    Get PDF
    Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing
    • 

    corecore