536 research outputs found

    Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    Get PDF
    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\'e map of the hybrid zero dynamics. Three strategies are explored. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller. In the third approach, the effect of output selection is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller

    Real-Time Planning with Primitives for Dynamic Walking over Uneven Terrain

    Full text link
    We present an algorithm for receding-horizon motion planning using a finite family of motion primitives for underactuated dynamic walking over uneven terrain. The motion primitives are defined as virtual holonomic constraints, and the special structure of underactuated mechanical systems operating subject to virtual constraints is used to construct closed-form solutions and a special binary search tree that dramatically speed up motion planning. We propose a greedy depth-first search and discuss improvement using energy-based heuristics. The resulting algorithm can plan several footsteps ahead in a fraction of a second for both the compass-gait walker and a planar 7-Degree-of-freedom/five-link walker.Comment: Conference submissio

    Section-Map Stability Criterion for Biped Robots

    Get PDF

    Fast walking with rhythmic sway of torso in a 2D passive ankle walker

    Get PDF
    There is a category of biped robots that are equipped with passive or un-actuated ankles, which we call Passive-Ankle Walkers (PAWs). Lack of actuation at ankles is a disadvantage in the fast walking of PAWs. We started this study with an intuitive hypothesis that rhythmic sway of torso may enable faster walking in PAWs. To test this hypothesis, firstly, we optimized the rhythmic sway of torso of a simulated PAW model for fast walking speed, and analyzed the robustness of the optimal trajectories. Then we implemented the optimal trajectories on a real robot. Both the simulation analysis and the experimental results indicated that optimized torso-swaying can greatly increase the walking speed by 40%. By analyzing the walking patterns of the simulated model and the real robot, we identified the reason for the faster walking with swaying-torso: The rhythmic sway of torso enables the robot to walk with a relatively large step-length while still keeninu a hizh sten-frenuencv
    corecore