5,443 research outputs found

    A study of self-similar traffic generation for ATM networks

    Get PDF
    This thesis discusses the efficient and accurate generation of self-similar traffic for ATM networks. ATM networks have been developed to carry multiple service categories. Since the traffic on a number of existing networks is bursty, much research focuses on how to capture the characteristics of traffic to reduce the impact of burstiness. Conventional traffic models do not represent the characteristics of burstiness well, but self-similar traffic models provide a closer approximation. Self-similar traffic models have two fundamental properties, long-range dependence and infinite variance, which have been found in a large number of measurements of real traffic. Therefore, generation of self-similar traffic is vital for the accurate simulation of ATM networks. The main starting point for self-similar traffic generation is the production of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN). In this thesis six algorithms are brought together so that their efficiency and accuracy can be assessed. It is shown that the discrete FGN (dPGN) algorithm and the Weierstrass-Mandelbrot (WM) function are the best in terms of accuracy while the random midpoint displacement (RMD) algorithm, successive random addition (SRA) algorithm, and the WM function are superior in terms of efficiency. Three hybrid approaches are suggested to overcome the inefficiency or inaccuracy of the six algorithms. The combination of the dFGN and RMD algorithm was found to be the best in that it can generate accurate samples efficiently and on-the-fly. After generating FBM sample traces, a further transformation needs to be conducted with either the marginal distribution model or the storage model to produce self-similar traffic. The storage model is a better transformation because it provides a more rigorous mathematical derivation and interpretation of physical meaning. The suitability of using selected Hurst estimators, the rescaled adjusted range (R/S) statistic, the variance-time (VT) plot, and Whittle's approximate maximum likelihood estimator (MLE), is also covered. Whittle's MLE is the better estimator, the R/S statistic can only be used as a reference, and the VT plot might misrepresent the actual Hurst value. An improved method for the generation of self-similar traces and their conversion to traffic has been proposed. This, combined with the identification of reliable methods for the estimators of the Hurst parameter, significantly advances the use of self-similar traffic models in ATM network simulation

    An acceleration simulation method for power law priority traffic

    Get PDF
    A method for accelerated simulation for simulated self-similar processes is proposed. This technique simplifies the simulation model and improves the efficiency by using excess packets instead of packet-by-packet source traffic for a FIFO and non-FIFO buffer scheduler. In this research is focusing on developing an equivalent model of the conventional packet buffer that can produce an output analysis (which in this case will be the steady state probability) much faster. This acceleration simulation method is a further development of the Traffic Aggregation technique, which had previously been applied to FIFO buffers only and applies the Generalized Ballot Theorem to calculate the waiting time for the low priority traffic (combined with prior work on traffic aggregation). This hybrid method is shown to provide a significant reduction in the process time, while maintaining queuing behavior in the buffer that is highly accurate when compared to results from a conventional simulatio

    The pseudo-self-similar traffic model: application and validation

    Get PDF
    Since the early 1990¿s, a variety of studies has shown that network traffic, both for local- and wide-area networks, has self-similar properties. This led to new approaches in network traffic modelling because most traditional traffic approaches result in the underestimation of performance measures of interest. Instead of developing completely new traffic models, a number of researchers have proposed to adapt traditional traffic modelling approaches to incorporate aspects of self-similarity. The motivation for doing so is the hope to be able to reuse techniques and tools that have been developed in the past and with which experience has been gained. One such approach for a traffic model that incorporates aspects of self-similarity is the so-called pseudo self-similar traffic model. This model is appealing, as it is easy to understand and easily embedded in Markovian performance evaluation studies. In applying this model in a number of cases, we have perceived various problems which we initially thought were particular to these specific cases. However, we recently have been able to show that these problems are fundamental to the pseudo self-similar traffic model. In this paper we review the pseudo self-similar traffic model and discuss its fundamental shortcomings. As far as we know, this is the first paper that discusses these shortcomings formally. We also report on ongoing work to overcome some of these problems

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    Self-Similarity in a multi-stage queueing ATM switch fabric

    Get PDF
    Recent studies of digital network traffic have shown that arrival processes in such an environment are more accurately modeled as a statistically self-similar process, rather than as a Poisson-based one. We present a simulation of a combination sharedoutput queueing ATM switch fabric, sourced by two models of self-similar input. The effect of self-similarity on the average queue length and cell loss probability for this multi-stage queue is examined for varying load, buffer size, and internal speedup. The results using two self-similar input models, Pareto-distributed interarrival times and a Poisson-Zeta ON-OFF model, are compared with each other and with results using Poisson interarrival times and an ON-OFF bursty traffic source with Ge ometrically distributed burst lengths. The results show that at a high utilization and at a high degree of self-similarity, switch performance improves slowly with increasing buffer size and speedup, as compared to the improvement using Poisson-based traffic

    Video traffic modeling and delivery

    Get PDF
    Video is becoming a major component of the network traffic, and thus there has been a great interest to model video traffic. It is known that video traffic possesses short range dependence (SRD) and long range dependence (LRD) properties, which can drastically affect network performance. By decomposing a video sequence into three parts, according to its motion activity, Markov-modulated self-similar process model is first proposed to capture autocorrelation function (ACF) characteristics of MPEG video traffic. Furthermore, generalized Beta distribution is proposed to model the probability density functions (PDFs) of MPEG video traffic. It is observed that the ACF of MPEG video traffic fluctuates around three envelopes, reflecting the fact that different coding methods reduce the data dependency by different amount. This observation has led to a more accurate model, structurally modulated self-similar process model, which captures the ACF of the traffic, both SRD and LRD, by exploiting the MPEG structure. This model is subsequently simplified by simply modulating three self-similar processes, resulting in a much simpler model having the same accuracy as the structurally modulated self-similar process model. To justify the validity of the proposed models for video transmission, the cell loss ratios (CLRs) of a server with a limited buffer size driven by the empirical trace are compared to those driven by the proposed models. The differences are within one order, which are hardly achievable by other models, even for the case of JPEG video traffic. In the second part of this dissertation, two dynamic bandwidth allocation algorithms are proposed for pre-recorded and real-time video delivery, respectively. One is based on scene change identification, and the other is based on frame differences. The proposed algorithms can increase the bandwidth utilization by a factor of two to five, as compared to the constant bit rate (CBR) service using peak rate assignment

    Discrete-time heavy-tailed chains, and their properties in modeling network traffic

    Get PDF
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Modeling and Computer Simulation , http://dx.doi.org/10.1145/10.1145/1276927.1276930The particular statistical properties found in network measurements, namely self-similarity and long-range dependence, cannot be ignored in modeling network and Internet traffic. Thus, despite their mathematical tractability, traditional Markov models are not appropriate for this purpose, since their memoryless nature contradicts the burstiness of transmitted packets. However, it is desirable to find a similarly tractable model which is, at the same time, rigorous at capturing the features of network traffic. This work presents discrete-time heavy-tailed chains, a tractable approach to characterize network traffic as a superposition of discrete-time “on/off” sources. This is a particular case of the generic “on/off” heavy-tailed model, thus shows the same statistical features as the former, particularly self-similarity and long-range dependence, when the number of aggregated sources approaches infinity. The model is then applicable to characterize a number of discrete-time communication systems, for instance, ATM and optical packet switching, to further derive meaningful performance metrics such as average burst duration and the number of active sources in a random instant.The authors would like to acknowledge the support of the UKLight MASTS project (EPSRC, UK) and the DIOR project (MEC, Spain) to this work

    Resource dimensioning through buffer sampling

    Get PDF
    Link dimensioning, i.e., selecting a (minimal) link capacity such that the users’ performance requirements are met, is a crucial component of network design. It requires insight into the interrelationship between the traffic offered (in terms of the mean offered load M, but also its fluctuation around the mean, i.e., ‘burstiness’), the envisioned performance level, and the capacity needed. We first derive, for different performance criteria, theoretical dimensioning formulae that estimate the required capacity C as a function of the input traffic and the performance target. For the special case of Gaussian input traffic these formulae reduce to C = M+V , where directly relates to the performance requirement (as agreed upon in a service level agreement) and V reflects the burstiness (at the timescale of interest). We also observe that Gaussianity applies for virtually all realistic scenarios; notably, already for a relatively low aggregation level the Gaussianity assumption is justified.\ud As estimating M is relatively straightforward, the remaining open issue concerns the estimation of V . We argue that, particularly if V corresponds to small time-scales, it may be inaccurate to estimate it directly from the traffic traces. Therefore, we propose an indirect method that samples the buffer content, estimates the buffer content distribution, and ‘inverts’ this to the variance. We validate the inversion through extensive numerical experiments (using a sizeable collection of traffic traces from various representative locations); the resulting estimate of V is then inserted in the dimensioning formula. These experiments show that both the inversion and the dimensioning formula are remarkably accurate
    corecore