231 research outputs found

    Modelling and simulation of water distribution systems with quantised state system methods

    Get PDF
    The work in this paper describes a study of quantised state systems in order to formulate a new framework within which water distribution systems can be modelled and simulated. In contrast to the classic time-slicing simulators, depending on the numerical integration algorithms, the quantisation of system states would allow accounting for the iscontinuities exhibited by control elements in a more efficient manner, and thereby, offer a significant increase in speed of the simulation of water network models.The proposed approach is evaluated on a case study and compared against the results obtained from the Epanet2 simulator and OpenModelica

    Advanced modelling and simulation of water distribution systems with discontinuous control elements

    Get PDF
    Water distribution systems are large and complex structures. Hence, their construction, management and improvements are time consuming and expensive. But nearly all the optimisation methods, whether aimed at design or operation, suffer from the need for simulation models necessary to evaluate the performance of solutions to the problem. These simulation models, however, are increasing in size and complexity, and especially for operational control purposes, where there is a need to regularly update the control strategy to account for the fluctuations in demands, the combination of a hydraulic simulation model and optimisation is likely to be computationally excessive for all but the simplest of networks. The work presented in this thesis has been motivated by the need for reduced, whilst at the same time appropriately accurate, models to replicate the complex and nonlinear nature of water distribution systems in order to optimise their operation. This thesis attempts to establish the ground rules to form an underpinning basis for the formulation and subsequent evaluation of such models. Part I of this thesis introduces some of the modelling, simulation and optimisation problems currently faced by water industry. A case study is given to emphasise one particular subject, namely reduction of water distribution system models. A systematic research resulted in development of a new methodology which encapsulate not only the system mass balance but also the system energy distribution within the model reduction process. The methodology incorporates the energy audits concepts into the model reduction algorithm allowing the preservation of the original model energy distribution by imposing new pressure constraints in the reduced model. The appropriateness of the new methodology is illustrated on the theoretical and industrial case studies. Outcomes from these studies demonstrate that the new extension to the model reduction technique can simplify the inherent complexity of water networks while preserving the completeness of original information. An underlying premise which forms a common thread running through the thesis, linking Parts I and II, is in recognition of the need for the more efficient paradigm to model and simulate water networks; effectively accounting for the discontinuous behaviour exhibited by water network components. Motivated largely by the potential of contemplating a new paradigm to water distribution system modelling and simulation, a further major research area, which forms the basis of Part II, leads to a study of the discrete event specification formalism and quantised state systems to formulate a framework within which water distribution systems can be modelled and simulated. In contrast to the classic time-slicing simulators, depending on the numerical integration algorithms, the quantisation of system states would allow accounting for the discontinuities exhibited by control elements in a more efficient manner, and thereby, offer a significant increase in speed of the simulation of water network models. The proposed approach is evaluated on a number of case studies and compared with results obtained from the Epanet2 simulator and OpenModelica. Although the current state-of-art of the simulation tools utilising the quantised state systems do not allow to fully exploit their potential, the results from comparison demonstrate that, if the second or third order quantised-based integrations are used, the quantised state systems approach can outperform the conventional water network simulation methods in terms of simulation accuracy and run-time

    Optimising Event-Driven Spiking Neural Network with Regularisation and Cutoff

    Full text link
    Spiking neural networks (SNNs), a variant of artificial neural networks (ANNs) with the benefit of energy efficiency, have achieved the accuracy close to its ANN counterparts, on benchmark datasets such as CIFAR10/100 and ImageNet. However, comparing with frame-based input (e.g., images), event-based inputs from e.g., Dynamic Vision Sensor (DVS) can make a better use of SNNs thanks to the SNNs' asynchronous working mechanism. In this paper, we strengthen the marriage between SNNs and event-based inputs with a proposal to consider anytime optimal inference SNNs, or AOI-SNNs, which can terminate anytime during the inference to achieve optimal inference result. Two novel optimisation techniques are presented to achieve AOI-SNNs: a regularisation and a cutoff. The regularisation enables the training and construction of SNNs with optimised performance, and the cutoff technique optimises the inference of SNNs on event-driven inputs. We conduct an extensive set of experiments on multiple benchmark event-based datasets, including CIFAR10-DVS, N-Caltech101 and DVS128 Gesture. The experimental results demonstrate that our techniques are superior to the state-of-the-art with respect to the accuracy and latency

    Digital control networks for virtual creatures

    Get PDF
    Robot control systems evolved with genetic algorithms traditionally take the form of floating-point neural network models. This thesis proposes that digital control systems, such as quantised neural networks and logical networks, may also be used for the task of robot control. The inspiration for this is the observation that the dynamics of discrete networks may contain cyclic attractors which generate rhythmic behaviour, and that rhythmic behaviour underlies the central pattern generators which drive lowlevel motor activity in the biological world. To investigate this a series of experiments were carried out in a simulated physically realistic 3D world. The performance of evolved controllers was evaluated on two well known control tasks—pole balancing, and locomotion of evolved morphologies. The performance of evolved digital controllers was compared to evolved floating-point neural networks. The results show that the digital implementations are competitive with floating-point designs on both of the benchmark problems. In addition, the first reported evolution from scratch of a biped walker is presented, demonstrating that when all parameters are left open to evolutionary optimisation complex behaviour can result from simple components

    Spiking-Diffusion: Vector Quantized Discrete Diffusion Model with Spiking Neural Networks

    Full text link
    Spiking neural networks (SNNs) have tremendous potential for energy-efficient neuromorphic chips due to their binary and event-driven architecture. SNNs have been primarily used in classification tasks, but limited exploration on image generation tasks. To fill the gap, we propose a Spiking-Diffusion model, which is based on the vector quantized discrete diffusion model. First, we develop a vector quantized variational autoencoder with SNNs (VQ-SVAE) to learn a discrete latent space for images. With VQ-SVAE, image features are encoded using both the spike firing rate and postsynaptic potential, and an adaptive spike generator is designed to restore embedding features in the form of spike trains. Next, we perform absorbing state diffusion in the discrete latent space and construct a diffusion image decoder with SNNs to denoise the image. Our work is the first to build the diffusion model entirely from SNN layers. Experimental results on MNIST, FMNIST, KMNIST, and Letters demonstrate that Spiking-Diffusion outperforms the existing SNN-based generation model. We achieve FIDs of 37.50, 91.98, 59.23 and 67.41 on the above datasets respectively, with reductions of 58.60\%, 18.75\%, 64.51\%, and 29.75\% in FIDs compared with the state-of-art work.Comment: Under Revie

    Hardward and algorithm architectures for real-time additive synthesis

    Get PDF
    Additive synthesis is a fundamental computer music synthesis paradigm tracing its origins to the work of Fourier and Helmholtz. Rudimentary implementation linearly combines harmonic sinusoids (or partials) to generate tones whose perceived timbral characteristics are a strong function of the partial amplitude spectrum. Having evolved over time, additive synthesis describes a collection of algorithms each characterised by the time-varying linear combination of basis components to generate temporal evolution of timbre. Basis components include exactly harmonic partials, inharmonic partials with time-varying frequency or non-sinusoidal waveforms each with distinct spectral characteristics. Additive synthesis of polyphonic musical instrument tones requires a large number of independently controlled partials incurring a large computational overhead whose investigation and reduction is a key motivator for this work. The thesis begins with a review of prevalent synthesis techniques setting additive synthesis in context and introducing the spectrum modelling paradigm which provides baseline spectral data to the additive synthesis process obtained from the analysis of natural sounds. We proceed to investigate recursive and phase accumulating digital sinusoidal oscillator algorithms, defining specific metrics to quantify relative performance. The concepts of phase accumulation, table lookup phase-amplitude mapping and interpolated fractional addressing are introduced and developed and shown to underpin an additive synthesis subclass - wavetable lookup synthesis (WLS). WLS performance is simulated against specific metrics and parameter conditions peculiar to computer music requirements. We conclude by presenting processing architectures which accelerate computational throughput of specific WLS operations and the sinusoidal additive synthesis model. In particular, we introduce and investigate the concept of phase domain processing and present several “pipeline friendly” arithmetic architectures using this technique which implement the additive synthesis of sinusoidal partials
    corecore