1,191 research outputs found

    Weighted level set evolution based on local edge features for medical image segmentation

    Get PDF
    Level set methods have been widely used to implement active contours for image segmentation applications due to their good boundary detection accuracy. In the context of medical image segmentation, weak edges and inhomogeneities remain important issues that may hinder the accuracy of any segmentation method based on active contours implemented using level set methods. This paper proposes a method based on active contours implemented using level set methods for segmentation of such medical images. The proposed method uses a level set evolution that is based on the minimization of an objective energy functional whose energy terms are weighted according to their relative importance in detecting boundaries. This relative importance is computed based on local edge features collected from the adjacent region located inside and outside of the evolving contour. The local edge features employed are the edge intensity and the degree of alignment between the image’s gradient vector flow field and the evolving contour’s normal. We evaluate the proposed method for segmentation of various regions in real MRI and CT slices, X-ray images, and ultra sound images. Evaluation results confirm the advantage of weighting energy forces using local edge features to reduce leakage. These results also show that the proposed method leads to more accurate boundary detection results than state-of-the-art edge-based level set segmentation methods, particularly around weak edges

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Weighted Level Set Evolution Based on Local Edge Features for Medical Image Segmentation

    Full text link

    Robust inversion and detection techniques for improved imaging performance

    Full text link
    Thesis (Ph.D.)--Boston UniversityIn this thesis we aim to improve the performance of information extraction from imaging systems through three thrusts. First, we develop improved image formation methods for physics-based, complex-valued sensing problems. We propose a regularized inversion method that incorporates prior information about the underlying field into the inversion framework for ultrasound imaging. We use experimental ultrasound data to compute inversion results with the proposed formulation and compare it with conventional inversion techniques to show the robustness of the proposed technique to loss of data. Second, we propose methods that combine inversion and detection in a unified framework to improve imaging performance. This framework is applicable for cases where the underlying field is label-based such that each pixel of the underlying field can only assume values from a discrete, limited set. We consider this unified framework in the context of combinatorial optimization and propose graph-cut based methods that would result in label-based images, thereby eliminating the need for a separate detection step. Finally, we propose a robust method of object detection from microscopic nanoparticle images. In particular, we focus on a portable, low cost interferometric imaging platform and propose robust detection algorithms using tools from computer vision. We model the electromagnetic image formation process and use this model to create an enhanced detection technique. The effectiveness of the proposed technique is demonstrated using manually labeled ground-truth data. In addition, we extend these tools to develop a detection based autofocusing algorithm tailored for the high numerical aperture interferometric microscope

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Variational Image Segmentation with Constraints

    Get PDF
    The research of Huizhu Pan addresses the problem of image segmentation with constraints though designing and solving various variational models. A novel constraint term is designed for the use of landmarks in image segmentation. Two region-based segmentation models were proposed where the segmentation contour passes through landmark points. A more stable and memory efficient solution to the self-repelling snakes model, a variational model with the topology preservation constraint, was also designed
    • …
    corecore