486 research outputs found

    A research survey: review of flexible job shop scheduling techniques

    Get PDF
    In the last 25 years, extensive research has been carried out addressing the flexible job shop scheduling (JSS) problem. A variety of techniques ranging from exact methods to hybrid techniques have been used in this research. The paper aims at presenting the development of flexible JSS and a consolidated survey of various techniques that have been employed since 1990 for problem resolution. The paper comprises evaluation of publications and research methods used in various research papers. Finally, conclusions are drawn based on performed survey results. A total of 404 distinct publications were found addressing the FJSSP. Some of the research papers presented more than one technique/algorithm to solve the problem that is categorized into 410 different applications. Selected time period of these research papers is between 1990 and February 2014. Articles were searched mainly on major databases such as SpringerLink, Science Direct, IEEE Xplore, Scopus, EBSCO, etc. and other web sources. All databases were searched for “flexible job shop” and “scheduling” in the title an

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Makespan minimizing on multiple travel salesman problem with a learning effect of visiting time

    Get PDF
    -The multiple traveling salesman problem (MTSP) involves the assignment and sequencing procedure simultaneously. The assignment of a set of nodes to each visitors and determining the sequence of visiting of nodes for each visitor. Since specific range of process is needed to be carried out in nodes in commercial environment, several factors associated with routing problem are required to be taken into account. This research considers visitors’ skill and category of customers which can affect visiting time of visitors in nodes. With regard to learning-by-doing, visiting time in nodes can be reduced. And different class of customers which are determined based on their potential purchasing of power specifies that required time for nodes can be vary. So, a novel optimization model is presented to formulate MTSP, which attempts to ascertain the optimum routes for salesmen by minimizing the makespan to ensure the balance of workload of visitors. Since this problem is an NP-hard problem, for overcoming the restriction of exact methods for solving practical large-scale instances within acceptable computational times. So, Artificial Immune System (AIS) and the Firefly (FA) metaheuristic algorithm are implemented in this paper and algorithms parameters are calibrated by applying Taguchi technique. The solution methodology is assessed by an array of numerical examples and the overall performances of these metaheuristic methods are evaluated by analyzing their results with the optimum solutions to suggested problems. The results of statistical analysis by considering 95% confidence interval for calculating average relative percentage of deviation (ARPD) reveal that the solutions of proposed AIS algorithm has less variation and Its’ confidence interval of closer than to zero with no overlapping with that of FA. Although both proposed meta-heuristics are effective and efficient in solving small-scale problems, in medium and large scales problems, AIS had a better performance in a shorter average time. Finally, the applicability of the suggested pattern is implemented in a case study in a specific company, namely Kalleh

    Initialization of a Multi-objective Evolutionary Algorithms Knowledge Acquisition System for Renewable Energy Power Plants

    Get PDF
    pp. 185-204The design of Renewable Energy Power Plants (REPPs) is crucial not only for the investments' performance and attractiveness measures, but also for the maximization of resource (source) usage (e.g. sun, water, and wind) and the minimization of raw materials (e.g. aluminum: Al, cadmium: Cd, iron: Fe, silicon: Si, and tellurium: Te) consumption. Hence, several appropriate and satisfactory Multi-objective Problems (MOPs) are mandatory during the REPPs' design phases. MOPs related tasks can only be managed by very well organized knowledge acquisition on all REPPs' design equations and models. The proposed MOPs need to be solved with one or more multiobjective algorithm, such as Multi-objective Evolutionary Algorithms (MOEAs). In this respect, the first aim of this research study is to start gathering knowledge on the REPPs' MOPs. The second aim of this study is to gather detailed information about all MOEAs and available free software tools for their development. The main contribution of this research is the initialization of a proposed multi-objective evolutionary algorithm knowledge acquisition system for renewable energy power plants (MOEAs-KAS-FREPPs) (research and development loopwise process: develop, train, validate, improve, test, improve, operate, and improve). As a simple representative example of this knowledge acquisition system research with two selective and elective proposed standard objectives (as test objectives) and eight selective and elective proposed standard constraints (as test constraints) are generated and applied as a standardized MOP for a virtual small hydropower plant design and investment. The maximization of energy generation (MWh) and the minimization of initial investment cost (million €) are achieved by the Multi-objective Genetic Algorithm (MOGA), the Niched Sharing Genetic Algorithm/Non-dominated Sorting Genetic Algorithm (NSGA-I), and the NSGA-II algorithms in the Scilab 6.0.0 as only three standardized MOEAs amongst all proposed standardized MOEAs on two desktop computer configurations (Windows 10 Home 1709 64 bits, Intel i5-7200 CPU @ 2.7 GHz, 8.00 GB RAM with internet connection and Windows 10 Pro, Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz, 6,00 GB RAM with internet connection). The algorithm run-times (computation time) of the current applications vary between 20.64 and 59.98 seconds.S

    Assessing fuel burn inefficiencies in oceanic airspace

    Get PDF
    Increasing the efficiency of aircraft operations offers a shorter term solution to decreasing aircraft fuel burn than fleet replacement. By estimating the current airspace inefficiency, we can get an idea of the upper limit of savings. Oceanic airspace presents a unique opportunity for savings due to increased separation differences vs. overland flight. We assess fuel burn inefficiency by comparing estimated fuel burn for real world flights with the estimated optimal fuel burn. For computing fuel burn, we use the Base of Aircraft Data (BADA) with corrections based on research by Yoder (2005). Our fuel burn results show general agreement with Yoder’s results. Optimal operation depends on flying 4-D trajectories that use the least amount of fuel. We decompose optimal 4-D trajectories into vertical and horizontal components and analyze the inefficiencies of each separately. We use the concept of Specific Ground Range [Jensen, 2011], to find optimal altitudes and speeds. We combine the optimal altitudes and speeds with an aircraft proximity algorithm to find pairs of aircraft in a vertical blocking situations. To find the fuel optimal horizontal track in a wind field, we use methods from the field of Optimal Control. The original problem formulation can be transformed into a Two Point Boundary Value problem which we solve using MATLAB’s bvp4c function. From our set of flights, we hypothesized a scenario where aircraft stack in such a way that they cannot climb to their optimal altitudes because of separations standards. Using aircraft positions we find when aircraft were within separation standards and were blocked from climbing or descending to their optimal altitude. We split our inefficiency results into a blocked and non-blocked set to see if blocking had an effect on mean inefficiency. Our set of flights consisted of real world flights that flew through WATRS and CEP airspace regions during the month of April 2016. Using the optimal altitude for actual flight Mach profiles, we compute a mean inefficiency of 4.75% in WATRS and 4.50% in CEP, both of which are roughly 2 to 2.5 percentage points higher than studies using proprietary performance models and data. BADA overestimates optimal altitudes, leading to an overestimate in inefficiency. Inefficiency due to off-optimal speed for WATRS is 2.18% vs. 1.86% in CEP. Blocking events result in a 2.59 percentage point increase in mean inefficiency due to off-optimal altitude in WATRS flights, and a 1.21 percentage point increase in mean inefficiency due to off-optimal altitude in CEP flights. Using wind-optimal horizontal tracks gave a 1.24% mean inefficiency in WATRS, and a 0.41% mean inefficiency in CEP. The results indicate that, in total, flights through WATRS and CEP have approximately the same inefficiency due to off-optimal altitudes, but that blocking effects are more prevalent in WATRS. In addition, flights through WATRS are farther from their wind-optimal horizontal tracks than flights in CEP

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    A water flow algorithm for optimization problems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Enhanced grey wolf optimisation algorithm for feature selection in anomaly detection

    Get PDF
    Anomaly detection deals with identification of items that do not conform to an expected pattern or items present in a dataset. The performance of different mechanisms utilized to perform the anomaly detection depends heavily on the group of features used. Thus, not all features in the dataset can be used in the classification process since some features may lead to low performance of classifier. Feature selection (FS) is a good mechanism that minimises the dimension of high-dimensional datasets by deleting the irrelevant features. Modified Binary Grey Wolf Optimiser (MBGWO) is a modern metaheuristic algorithm that has successfully been used for FS for anomaly detection. However, the MBGWO has several issues in finding a good quality solution. Thus, this study proposes an enhanced binary grey wolf optimiser (EBGWO) algorithm for FS in anomaly detection to overcome the algorithm issues. The first modification enhances the initial population of the MBGWO using a heuristic based Ant Colony Optimisation algorithm. The second modification develops a new position update mechanism using the Bat Algorithm movement. The third modification improves the controlled parameter of the MBGWO algorithm using indicators from the search process to refine the solution. The EBGWO algorithm was evaluated on NSL-KDD and six (6) benchmark datasets from the University California Irvine (UCI) repository against ten (10) benchmark metaheuristic algorithms. Experimental results of the EBGWO algorithm on the NSL-KDD dataset in terms of number of selected features and classification accuracy are superior to other benchmark optimisation algorithms. Moreover, experiments on the six (6) UCI datasets showed that the EBGWO algorithm is superior to the benchmark algorithms in terms of classification accuracy and second best for the number of selected features. The proposed EBGWO algorithm can be used for FS in anomaly detection tasks that involve any dataset size from various application domains

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin
    corecore