220 research outputs found

    Solving Graph Coloring Problems Using Discrete Artificial Bee Colony

    Get PDF
    筑波大学 (University of Tsukuba)201

    Global Optimization Using Local Search Approach for Course Scheduling Problem

    Get PDF
    Course scheduling problem is a combinatorial optimization problem which is defined over a finite discrete problem whose candidate solution structure is expressed as a finite sequence of course events scheduled in available time and space resources. This problem is considered as non-deterministic polynomial complete problem which is hard to solve. Many solution methods have been studied in the past for solving the course scheduling problem, namely from the most traditional approach such as graph coloring technique; the local search family such as hill-climbing search, taboo search, and simulated annealing technique; and various population-based metaheuristic methods such as evolutionary algorithm, genetic algorithm, and swarm optimization. This article will discuss these various probabilistic optimization methods in order to gain the global optimal solution. Furthermore, inclusion of a local search in the population-based algorithm to improve the global solution will be explained rigorously

    Scheduling Problems

    Get PDF
    Scheduling is defined as the process of assigning operations to resources over time to optimize a criterion. Problems with scheduling comprise both a set of resources and a set of a consumers. As such, managing scheduling problems involves managing the use of resources by several consumers. This book presents some new applications and trends related to task and data scheduling. In particular, chapters focus on data science, big data, high-performance computing, and Cloud computing environments. In addition, this book presents novel algorithms and literature reviews that will guide current and new researchers who work with load balancing, scheduling, and allocation problems

    An Image Segmentation by BFV and TLBO

    Get PDF
    This paper presents the establishing of a biconvex fuzzy variational (BFV) method with teaching learning based optimization (TLBO) for geometric image segmentation (GIS). Firstly, a biconvex object function is adopted to process GIS. Then, TLBO is introduced to maximally optimize the length penalty item (LPI), which will be changed under teaching and learner phase of TLBO, making the LPI closer to the target boundary. Afterward, the LPI can be adjusted based on fitness function, namely, the evaluation standards of image quality. Finally, the LP is combined item with the numerical order to get better results. Different GIS strategies are compared with various fitness functions in terms of accuracy. Simulations show that the presented method is more effective in this area

    Swarm intelligence techniques for optimization and management tasks insensor networks

    Get PDF
    The main contributions of this thesis are located in the domain of wireless sensor netorks. More in detail, we introduce energyaware algorithms and protocols in the context of the following topics: self-synchronized duty-cycling in networks with energy harvesting capabilities, distributed graph coloring and minimum energy broadcasting with realistic antennas. In the following, we review the research conducted in each case. We propose a self-synchronized duty-cycling mechanism for sensor networks. This mechanism is based on the working and resting phases of natural ant colonies, which show self-synchronized activity phases. The main goal of duty-cycling methods is to save energy by efficiently alternating between different states. In the case at hand, we considered two different states: the sleep state, where communications are not possible and energy consumption is low; and the active state, where communication result in a higher energy consumption. In order to test the model, we conducted an extensive experimentation with synchronous simulations on mobile networks and static networks, and also considering asynchronous networks. Later, we extended this work by assuming a broader point of view and including a comprehensive study of the parameters. In addition, thanks to a collaboration with the Technical University of Braunschweig, we were able to test our algorithm in the real sensor network simulator Shawn (http://shawn.sf.net). The second part of this thesis is devoted to the desynchronization of wireless sensor nodes and its application to the distributed graph coloring problem. In particular, our research is inspired by the calling behavior of Japanese tree frogs, whose males use their calls to attract females. Interestingly, as female frogs are only able to correctly localize the male frogs when their calls are not too close in time, groups of males that are located nearby each other desynchronize their calls. Based on a model of this behavior from the literature, we propose a novel algorithm with applications to the field of sensor networks. More in detail, we analyzed the ability of the algorithm to desynchronize neighboring nodes. Furthermore, we considered extensions of the original model, hereby improving its desynchronization capabilities.To illustrate the potential benefits of desynchronized networks, we then focused on distributed graph coloring. Later, we analyzed the algorithm more extensively and show its performance on a larger set of benchmark instances. The classical minimum energy broadcast (MEB) problem in wireless ad hoc networks, which is well-studied in the scientific literature, considers an antenna model that allows the adjustment of the transmission power to any desired real value from zero up to the maximum transmission power level. However, when specifically considering sensor networks, a look at the currently available hardware shows that this antenna model is not very realistic. In this work we re-formulate the MEB problem for an antenna model that is realistic for sensor networks. In this antenna model transmission power levels are chosen from a finite set of possible ones. A further contribution concerns the adaptation of an ant colony optimization algorithm --currently being the state of the art for the classical MEB problem-- to the more realistic problem version, the so-called minimum energy broadcast problem with realistic antennas (MEBRA). The obtained results show that the advantage of ant colony optimization over classical heuristics even grows when the number of possible transmission power levels decreases. Finally we build a distributed version of the algorithm, which also compares quite favorably against centralized heuristics from the literature.Las principles contribuciones de esta tesis se encuentran en el domino de las redes de sensores inalámbricas. Más en detalle, introducimos algoritmos y protocolos que intentan minimizar el consumo energético para los siguientes problemas: gestión autosincronizada de encendido y apagado de sensores con capacidad para obtener energía del ambiente, coloreado de grafos distribuido y broadcasting de consumo mínimo en entornos con antenas reales. En primer lugar, proponemos un sistema capaz de autosincronizar los ciclos de encendido y apagado de los nodos de una red de sensores. El mecanismo está basado en las fases de trabajo y reposo de las colonias de hormigas tal y como estas pueden observarse en la naturaleza, es decir, con fases de actividad autosincronizadas. El principal objectivo de este tipo de técnicas es ahorrar energía gracias a alternar estados de forma eficiente. En este caso en concreto, consideramos dos estados diferentes: el estado dormido, en el que los nodos no pueden comunicarse y el consumo energético es bajo; y el estado activo, en el que las comunicaciones propician un consumo energético elevado. Con el objetivo de probar el modelo, se ha llevado a cabo una extensa experimentación que incluye tanto simulaciones síncronas en redes móviles y estáticas, como simulaciones en redes asíncronas. Además, este trabajo se extendió asumiendo un punto de vista más amplio e incluyendo un detallado estudio de los parámetros del algoritmo. Finalmente, gracias a la colaboración con la Technical University of Braunschweig, tuvimos la oportunidad de probar el mecanismo en el simulador realista de redes de sensores, Shawn (http://shawn.sf.net). La segunda parte de esta tesis está dedicada a la desincronización de nodos en redes de sensores y a su aplicación al problema del coloreado de grafos de forma distribuida. En particular, nuestra investigación está inspirada por el canto de las ranas de árbol japonesas, cuyos machos utilizan su canto para atraer a las hembras. Resulta interesante que debido a que las hembras solo son capaces de localizar las ranas macho cuando sus cantos no están demasiado cerca en el tiempo, los grupos de machos que se hallan en una misma región desincronizan sus cantos. Basado en un modelo de este comportamiento que se encuentra en la literatura, proponemos un nuevo algoritmo con aplicaciones al campo de las redes de sensores. Más en detalle, analizamos la habilidad del algoritmo para desincronizar nodos vecinos. Además, consideramos extensiones del modelo original, mejorando su capacidad de desincronización. Para ilustrar los potenciales beneficios de las redes desincronizadas, nos centramos en el problema del coloreado de grafos distribuido que tiene relación con diferentes tareas habituales en redes de sensores. El clásico problema del broadcasting de consumo mínimo en redes ad hoc ha sido bien estudiado en la literatura. El problema considera un modelo de antena que permite transmitir a cualquier potencia elegida (hasta un máximo establecido por el dispositivo). Sin embargo, cuando se trabaja de forma específica con redes de sensores, un vistazo al hardware actualmente disponible muestra que este modelo de antena no es demasiado realista. En este trabajo reformulamos el problema para el modelo de antena más habitual en redes de sensores. En este modelo, los niveles de potencia de transmisión se eligen de un conjunto finito de posibilidades. La siguiente contribución consiste en en la adaptación de un algoritmo de optimización por colonias de hormigas a la versión más realista del problema, también conocida como broadcasting de consumo mínimo con antenas realistas. Los resultados obtenidos muestran que la ventaja de este método sobre heurísticas clásicas incluso crece cuando el número de posibles potencias de transmisión decrece. Además, se ha presentado una versión distribuida del algoritmo, que también se compara de forma bastante favorable contra las heurísticas centralizadas conocidas

    Parallel Adaptive Algorithms for Sampling Large Scale Networks

    Get PDF
    The study of real-world systems, represented as networks, has important application in many disciplines including social sciences [1], bioinformatics [2] and software engineering [3]. These networks are extremely large, and analyzing them is very expensive. Our research work involves developing parallel graph sampling methods for efficient analysis of gene correlation networks. Our sampling algorithms maintain important structural and informational properties of large unstructured networks. We focus on preserving the relative importance, based on combinatorial metrics, rather than the exact measures. We use a special subgraph technique, based on finding triangles called maximal chordal subgraphs, which maintains the highly connected portions of the network while increasing the distance between less connected regions. Our results show that even with significant reduction of the network we can obtain reliable subgraphs which conserve most of the relevant combinatorial and functional properties. Additionally, sampling reveals new functional properties which were previously undiscovered in the original system

    複雑制約ネットワークを対象とした汎用群知能による問題解決方式

    Get PDF
    科学研究費助成事業 研究成果報告書:基盤研究(C)2015-2017課題番号 : 15K0029

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore