612 research outputs found

    A water wave model with horizontal circulation and accurate dispersion

    Get PDF
    We describe a new water wave model which is variational, and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite element profile with a small number of elements (say), leading to a framework for efficient modelling of the interaction of steepening and breaking waves near the shore with a large-scale horizontal flow. The equations are derived from a constrained variational formulation which leads to conservation laws for energy, mass, momentum and vertical vorticity (or circulation). We show that the potential flow water wave equations and the shallow-water equations are recovered in the relevant limits, and provide approximate shock relations for the model which can be used in numerical schemes to model breaking waves

    Primal dual mixed finite element methods for indefinite advection--diffusion equations

    Get PDF
    We consider primal-dual mixed finite element methods for the advection--diffusion equation. For the primal variable we use standard continuous finite element space and for the flux we use the Raviart-Thomas space. We prove optimal a priori error estimates in the energy- and the L2L^2-norms for the primal variable in the low Peclet regime. In the high Peclet regime we also prove optimal error estimates for the primal variable in the H(div)H(div) norm for smooth solutions. Numerically we observe that the method eliminates the spurious oscillations close to interior layers that pollute the solution of the standard Galerkin method when the local Peclet number is high. This method, however, does produce spurious solutions when outflow boundary layer presents. In the last section we propose two simple strategies to remove such numerical artefacts caused by the outflow boundary layer and validate them numerically.Comment: 25 pages, 6 figures, 5 table

    Variational water-wave model with accurate dispersion and vertical vorticity

    Get PDF
    A new water-wave model has been derived which is based on variational techniques and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite-element profile with a small number of elements (say), leading to a framework for efficient modeling of the interaction of steepening and breaking waves near the shore with a large-scale horizontal flow. The equations are derived from a constrained variational formulation which leads to conservation laws for energy, mass, momentum and vertical vorticity. It is shown that the potential-flow water-wave equations and the shallow-water equations are recovered in the relevant limits. Approximate shock relations are provided, which can be used in numerical schemes to model breaking waves

    Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method

    Get PDF
    This paper discusses the computation of derivatives for optimization problems governed by linear hyperbolic systems of partial differential equations (PDEs) that are discretized by the discontinuous Galerkin (dG) method. An efficient and accurate computation of these derivatives is important, for instance, in inverse problems and optimal control problems. This computation is usually based on an adjoint PDE system, and the question addressed in this paper is how the discretization of this adjoint system should relate to the dG discretization of the hyperbolic state equation. Adjoint-based derivatives can either be computed before or after discretization; these two options are often referred to as the optimize-then-discretize and discretize-then-optimize approaches. We discuss the relation between these two options for dG discretizations in space and Runge-Kutta time integration. Discretely exact discretizations for several hyperbolic optimization problems are derived, including the advection equation, Maxwell's equations and the coupled elastic-acoustic wave equation. We find that the discrete adjoint equation inherits a natural dG discretization from the discretization of the state equation and that the expressions for the discretely exact gradient often have to take into account contributions from element faces. For the coupled elastic-acoustic wave equation, the correctness and accuracy of our derivative expressions are illustrated by comparisons with finite difference gradients. The results show that a straightforward discretization of the continuous gradient differs from the discretely exact gradient, and thus is not consistent with the discretized objective. This inconsistency may cause difficulties in the convergence of gradient based algorithms for solving optimization problems

    An Entropy Stable Discontinuous Galerkin Finite-Element Moment Method for the Boltzmann Equation

    Full text link
    This paper presents a numerical approximation technique for the Boltzmann equation based on a moment system approximation in velocity dependence and a discontinuous Galerkin finite-element approximation in position dependence. The closure relation for the moment systems derives from minimization of a suitable {\phi}-divergence. This divergence-based closure yields a hierarchy of tractable symmetric hyperbolic moment systems that retain the fundamental structural properties of the Boltzmann equation. The resulting combined discontinuous Galerkin moment method corresponds to a Galerkin approximation of the Boltzmann equation in renormalized form. We present a new class of numerical flux functions, based on the underlying renormalized Boltzmann equation, that ensure entropy dissipation of the approximation scheme. Numerical results are presented for a one-dimensional test case.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0518
    corecore