12,374 research outputs found

    Regularization modeling for large-eddy simulation

    Get PDF
    A new modeling approach for large-eddy simulation (LES) is obtained by combining a `regularization principle' with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid-model, which resolves the closure problem. The central role of the filter in LES is fully restored, i.e., both the interpretation of LES predictions in terms of direct simulation results as well as the corresponding subgrid closure are specified by the filter. The regularization approach is illustrated with `Leray-smoothing' of the nonlinear convective terms. In turbulent mixing the new, implied subgrid model performs favorably compared to the dynamic eddy-viscosity procedure. The model is robust at arbitrarily high Reynolds numbers and correctly predicts self-similar turbulent flow development.Comment: 16 pages, 4 figures, submitted to Physics of Fluid

    Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

    Full text link
    We report the first demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure 1.0(1)1.0(1)~dB of broadband quadrature squeezing (∼4{\sim}4~dB inferred on-chip) and 1.5(3)1.5(3)~dB of photon number difference squeezing (∼7{\sim}7~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with raw unheralded second-order correlations g(2)g^{(2)} as high as 1.87(1)1.87(1) measured (∼1.9{\sim}1.9~when corrected for noise). Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.Comment: Significant improvements and updates to photon number squeezing results and discussions, including results on single temporal mode operatio

    On the Enhancement of Generalized Integrator-based Adaptive Filter Dynamic Tuning Range

    Get PDF
    • …
    corecore