1,306 research outputs found

    New Bounds for the Garden-Hose Model

    Get PDF
    We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Θ(n)\Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(nlog3n)O(n\cdot \log^3 n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f)GH(f) of the order Ω(n2+ϵ)\Omega(n^{2+\epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.Comment: In FSTTCS 201

    Communication Complexity Lower Bounds by Polynomials

    Full text link
    The quantum version of communication complexity allows the two communicating parties to exchange qubits and/or to make use of prior entanglement (shared EPR-pairs). Some lower bound techniques are available for qubit communication complexity, but except for the inner product function, no bounds are known for the model with unlimited prior entanglement. We show that the log-rank lower bound extends to the strongest model (qubit communication + unlimited prior entanglement). By relating the rank of the communication matrix to properties of polynomials, we are able to derive some strong bounds for exact protocols. In particular, we prove both the "log-rank conjecture" and the polynomial equivalence of quantum and classical communication complexity for various classes of functions. We also derive some weaker bounds for bounded-error quantum protocols.Comment: 16 pages LaTeX, no figures. 2nd version: rewritten and some results adde

    Communication Complexity of Cake Cutting

    Full text link
    We study classic cake-cutting problems, but in discrete models rather than using infinite-precision real values, specifically, focusing on their communication complexity. Using general discrete simulations of classical infinite-precision protocols (Robertson-Webb and moving-knife), we roughly partition the various fair-allocation problems into 3 classes: "easy" (constant number of rounds of logarithmic many bits), "medium" (poly-logarithmic total communication), and "hard". Our main technical result concerns two of the "medium" problems (perfect allocation for 2 players and equitable allocation for any number of players) which we prove are not in the "easy" class. Our main open problem is to separate the "hard" from the "medium" classes.Comment: Added efficient communication protocol for the monotone crossing proble

    Optimal lower bounds for universal relation, and for samplers and finding duplicates in streams

    Full text link
    In the communication problem UR\mathbf{UR} (universal relation) [KRW95], Alice and Bob respectively receive x,y{0,1}nx, y \in\{0,1\}^n with the promise that xyx\neq y. The last player to receive a message must output an index ii such that xiyix_i\neq y_i. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly Θ(min{n,log(1/δ)log2(nlog(1/δ))})\Theta(\min\{n,\log(1/\delta)\log^2(\frac n{\log(1/\delta)})\}) for failure probability δ\delta. Our lower bound holds even if promised support(y)support(x)\mathop{support}(y)\subset \mathop{support}(x). As a corollary, we obtain optimal lower bounds for p\ell_p-sampling in strict turnstile streams for 0p<20\le p < 2, as well as for the problem of finding duplicates in a stream. Our lower bounds do not need to use large weights, and hold even if promised x{0,1}nx\in\{0,1\}^n at all points in the stream. We give two different proofs of our main result. The first proof demonstrates that any algorithm A\mathcal A solving sampling problems in turnstile streams in low memory can be used to encode subsets of [n][n] of certain sizes into a number of bits below the information theoretic minimum. Our encoder makes adaptive queries to A\mathcal A throughout its execution, but done carefully so as to not violate correctness. This is accomplished by injecting random noise into the encoder's interactions with A\mathcal A, which is loosely motivated by techniques in differential privacy. Our second proof is via a novel randomized reduction from Augmented Indexing [MNSW98] which needs to interact with A\mathcal A adaptively. To handle the adaptivity we identify certain likely interaction patterns and union bound over them to guarantee correct interaction on all of them. To guarantee correctness, it is important that the interaction hides some of its randomness from A\mathcal A in the reduction.Comment: merge of arXiv:1703.08139 and of work of Kapralov, Woodruff, and Yahyazade
    corecore