37 research outputs found

    Cathode edge displacement by voiding coupled with grain boundary grooving in bamboo like metallic interconnects by surface drift-diffusion under the capillary and electromigration forces

    Get PDF
    AbstractThe kinetics of cathode edge shrinkage and displacement (drift) coupled strongly with the grain boundary (GB) grooving is investigated using the novel mathematical model developed by Ogurtani, in sandwich type thin film bamboo lines. The computer simulations are performed under the constant current (CC) and the switch-over constant voltage (SOCV) operations. The cathode drift velocity and the cathode failure time show the existence of two distinct phases, depending upon the normalized electron wind intensity parameter χ; the capillary (χ⩽0.01) and the electromigration (EM) dominating regimes (χ>0.01), having current exponent n, equal to 0 and 1, respectively. Analysis of various experimental data on the cathode drift velocity results a consistent value for the surface drift-diffusion coefficient, 1.0×10-5exp(-1.00eV/kT)m2s-1, for copper interconnects exposed to some contaminations during the processing and testing stages. This is found to be an excellent agreement with the experimental values reported in the literature after applying the proper 1/kT correction on the apparent activation enthalpy associated with Nernst–Einstein mobility relationship. The complete cathode failure time (CCFT) due to the cathode area shrinkage by voiding is also formulated by inverse scaling and normalization procedures, which show exactly the same capillary and EM dominating regimes. This formula can be used to predict very accurate CCFT for metallic lines with bamboo-like, near-bamboo, and even with polycrystalline structures by proper calculation of the cathode-edge path length (CEPL) parameter, in terms of the actual line width, the thickness and the grain size

    Effects of mechanical properties on the reliability of Cu/low-k metallization systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 211-217).Cu and low-dielectric-constant (k) metallization schemes are critical for improved performance of integrated circuits. However, low elastic moduli, a characteristic of the low-k materials, lead to significant reliability degradation in Cu-interconnects. A thorough understanding of the effects of mechanical properties on electromigration induced failures is required for accurate reliability assessments. During electromigration inside Cu-interconnects, a change in atomic concentration correlates with a change in stress through the effective bulk modulus of the materials system, B, which decreases as the moduli of low-k materials used as inter-level dielectrics (ILDs) decrease. This property is at the core of discussions on electromigration-induced failures by all mechanisms. B is computed using finite element modeling analyses, using experimentally determined mechanical properties of the individual constituents. Characterization techniques include nanoindentation, cantilever deflection, and pressurized membrane deflection for elastic properties measurements, and chevron-notched double-cantilever pull structures for adhesion measurements. The dominant diffusion path in Cu-interconnects is the interface between Cu and the capping layer, which is currently a Si3N4-based film. We performed experiments on Cu-interconnect segments to investigate the kinetics of electromigration. A steady resistance increase over time prior to open-circuit failure, a result of void growth, correlates with the electromigration drift velocity. Diffusive measurements made in this fashion are more fundamental than lifetime measurements alone, and correlate with the combined effects of the electron wind and the back stress forces during electromigration induced void growth.(cont.)Using this method, the electromigration activation energy was determined to be 0.80±0.06eV. We conducted experiments using Cu-interconnects with different lengths to study line length effects. Although a reliability improvement is observed as the segment length decreases, there is no deterministic current-density line-length product, jL, for which all segments are immortal. This is because small, slit-like voids forming directly below vias will cause open-failures in Cu-interconnects. Therefore, the probabilistic jLcrit values obtained from via-above type nterconnects approximate the thresholds for void nucleation. The fact that jLcrit,nuc monotonically decreases with B results from an energy balance between the strain energy released and surface energy cost for void nucleation and the critical stress required for void nucleation is proportional to B. We also performed electromigration experiments using Cu/low-k interconnect trees to investigate the effects of active atomic sinks and reservoirs on interconnect reliability. In all cases, failures were due to void growth. Kinetic parameters were extracted to be ... Quantitative analysis demonstrates that the reliability of the failing segments is modulated by the evolution of stress in the whole interconnect tree. During this process, not only the diffusive parameters but also B play critical roles. However, as B decreases, the positive effects of reservoirs on reliability are diminished, while the negative effects of sinks on reliability are amplified.(cont.) Through comprehensive failure analyses, we also successfully identified the mechanism of electromigration-induced extrusions in Cu/low-k interconnects to be nearmode-I interfacial fracture between the Si3N4-based capping layer and the metallization/ILD layer below. The critical stress required for extrusion is found to depend not only on B but also on the layout and dimensions of the interconnects. As B decreases, sparsely packed, wide interconnects are most prone to extrusion-induced failures. Altogether, this research accounts for the effects of mechanical properties on all mechanisms of failure due to electromigration. The results provide an improved experimental basis for accurate circuit-level, layout-specific reliability assessments.by Frank LiLi Wei.Ph.D

    ELECTROMECHANICAL INTERACTION ON THE DEFORMATION BEHAVIOR OF METALLIC MATERIALS

    Get PDF
    Metallic materials play important roles in providing electrical, thermal, and mechanical functions in electronic devices and systems. The understanding of the electrical-thermal-mechanical interaction caused by the passage of electric current with high density is important to improve the performance and reliability of electronic assembly and packaging. The electromechanical interaction on the deformation behavior of copper and tin is studied in this work. The electromechanical response of Cu strips was studied by passing a DC electric current. The electric resistance linearly increased with time before the occurrence of electric fusing. The electrothermal interaction led to the buckling of the Cu strips with the maximum deflection increasing with the increase of the electric current density. The total strain was found to be proportional to the square of the electric current density. A power law relation was used to describe the dependence of the time-to-fusing on the electric current density. Using the nanoindentation technique, the effect of electric current on the indentation deformation of copper and tin was studied. The reduced contact modulus of copper and tin decreased with increasing the electric current density. With the passage of a DC electric current, the indentation hardness of copper increased slightly with increasing electric current density. With the passage of an AC electric current, the indentation hardness of copper decreased with increasing the indentation deformation. With the passage of a DC electric current, the indentation hardness of tin decreased with increasing the indentation load, showing the normal indentation size effect. Both the limit of infinite depth and the characteristic length were dependent on the electric current density. Using the tensile creep technique, the creep deformation of pure tin was studied with the passage of a DC electric current. The steady state creep rate increased with the increase in temperature, tensile stress and electrical current density. For the same tensile stress and the same chamber temperature, the steady state creep rate increased linearly with the square of the electric current density. The electric current density has no significant effect on the stress exponent and activation energy of the tensile creep of tin for the experimental conditions

    Estudo da eletromigração em circuitos integrados na fase de projeto

    Get PDF
    Orientadores: Roberto Lacerda de Orio, Leandro Tiago ManeraTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O dano por eletromigração nas interconexões é um gargalo bem conhecido dos circuitos integrados, pois causam problemas de confiabilidade. A operação em temperaturas e densidades de corrente elevadas acelera os danos, aumentando a resistência da interconexão e, portanto, reduzindo a vida útil do circuito. Este problema tem se acentuado com o escalonamento da tecnologia. Para garantir a confiabilidade da interconexão e, como consequência, a confiabilidade do circuito integrado, métodos tradicionais baseados no chamado Efeito Blech e numa densidade de corrente máxima permitida são implementados durante o projeto da interconexão. Esses métodos, no entanto, não levam em consideração o impacto da eletromigração no desempenho do circuito. Neste trabalho, a abordagem tradicional é estendida e um método para avaliar o efeito da eletromigração no desempenho de circuito integrado é desenvolvido. O método é implementado em uma ferramenta que identifica as interconexões críticas em um circuito integrado e sugere larguras adequadas com base em diferentes critérios para mitigar os danos à eletromigração e aumentar a confiabilidade. Além disso, é determinada a variação dos parâmetros de desempenho do circuito conforme a resistência das interconexões aumenta. A ferramenta é incorporada ao fluxo de projeto do circuito integrado e usa os dados dos kits de projeto e relatórios diretamente disponíveis no ambiente de projeto. Uma análise precisa da distribuição de temperatura na estrutura de interconexão é essencial para uma melhor avaliação da confiabilidade da interconexão. Portanto, é implementado um modelo para calcular a temperatura em cada nível de metalização da estrutura de interconexão. A distribuição de temperatura nas camadas de metalização de diferentes tecnologias é investigada. É mostrado que a temperatura no Metal 1 da tecnologia Intel 10 nm aumenta 75 K, 12 K mais alta que no Metal 2. Como esperado, as camadas mais próximas dos transistores sofrem um aumento de temperatura mais significativo. A ferramenta é aplicada para avaliar eletromigração nas interconexões e na robustez de diferentes circuitos, como um oscilador em anel, um circuito gerador de tensão de referência tipo bandgap e um amplificador operacional. O amplificador operacional, em particular, é cuidadosamente estudado. A metodologia proposta identifica interconexões críticas que quando danificadas por eletromigração causam grandes variações no desempenho do circuito. No pior cenário, a frequência de corte do circuito varia 65% em 5 anos de operação. Uma descoberta interessante é que a metodologia proposta identifica interconexões críticas que não seriam identificadas pelos critérios tradicionais. Essas interconexões operam com densidades de corrente abaixo do limite recomendado pelas regras de projeto. No entanto, uma dessas interconexões leva a uma variação de 30% no ganho do amplificador operacional. Em resumo, a ferramenta proposta verificou que dos 20% de caminhos com uma densidade crítica de corrente, apenas 3% degradam significativamente o desempenho do circuito. Este trabalho traz o estudo da confiabilidade das interconexões e de circuitos integrados para a fase de projeto, o que permite avaliar a degradação do desempenho do circuito antecipadamente durante o seu desenvolvimento. A ferramenta desenvolvida permite ao projetista identificar interconexões críticas que não seriam detectadas usando o critério de densidade máxima de corrente, levando a uma análise mais ampla e precisa da robustez de circuitos integradosAbstract: Electromigration damage in interconnects is a well-known bottleneck of integrated circuits, because it causes reliability problems. Operation at high temperatures and current densities accelerates the damage, increasing the interconnect resistance and, therefore, reducing the circuit lifetime. This issue has been accentuated with the technology downscaling. To guarantee the interconnect reliability and, as a consequence, the integrated circuit reliability, traditional methods based on the so-called Blech Effect and on the maximum allowed current density are implemented during interconnect design. These methods, however, do not take into account the impact of the electromigration on the circuit performance. In this work the traditional approach is extended and a method to evaluate the effect of the electromigration in an integrated circuit performance is developed. The method is implemented in a tool which identifies the critical interconnect lines of an integrated circuit and suggests the proper interconnect width based on different criteria to mitigate the electromigration damage and to increase the reliability. In addition, the variation of performance parameters of the circuit as an interconnect resistance changes is determined. The tool is incorporated into the design flow of the integrated circuit and uses the data from design kits and reports directly available from the design environment. An accurate analysis of the temperature distribution on the interconnect structure is essential to a better assessment of the interconnect reliability. Therefore, a model to compute the temperature on each metallization level of the interconnect structure is implemented. The temperature distribution on the metallization layers of different technologies is investigated. It is shown that the temperature in the Metal 1 of the Intel 10 nm can increase by 75 K, 12 K higher than in the Metal 2. As expected, the layers that are closer to the transistors undergo a more significant temperature increase. The tool is applied to evaluate the interconnects and the robustness of different circuits, namely a ring oscillator, a bandgap voltage reference circuit, and an operational amplifier, against electromigration. The operational amplifier, in particular, is thoroughly studied. The proposed methodology identifies critical interconnects which under electromigration cause large variations in the performance of the circuit. In a worst-case scenario, the cutoff frequency of the circuit varies by 65% in 5 years of operation. An interesting finding is that the proposed methodology identifies critical interconnects which would not be identified by the traditional criteria. These interconnects have current densities below the limit recommended by the design rules. Nevertheless, one of such an interconnect leads to a variation of 30% in the gain of the operational amplifier. In summary, the proposed tool verified that from the 20% paths with a critical current density, only 3% degrades significantly the circuit performance. This work brings the study of the reliability of the interconnects and of integrated circuits to the design phase, which provides the assessment of a circuit performance degradation at an early stage of development. The developed tool allows the designer to identify critical interconnects which would not be detected using the maximum current density criterion, leading to more accurate analysis of the robustness of integrated circuitsDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutor em Engenharia Elétrica88882.329437/2019-01CAPE

    Tunable Copper Microstructures in Blanket Films and Trenches Using Pulsed Electrodeposition

    Get PDF
    Copper interconnects in microelectronics have long been plagued with thermo-mechanical reliability issues. Control over the copper deposition process and resulting microstructure can dictate its material properties and reduce stresses as well as defects that form in the copper. In this thesis, pulse electrodeposition processing parameters were evaluated for their impact on the copper microstructure (grain size, texture, and twin density and stress state) through electron backscattering diffraction and wafer curvature measurements. Varying levels of constraint were also investigated for their effect on the copper microstructure to better understand the microstructures of more complex three-dimensional interconnects. Highly texture blanket copper films were deposited with various pulse frequencies and duty cycle, which was found to control grain size, orientation, and twin density. Higher twin densities were also observed in the films with lower residual stress. The findings from blanket film studies were carried over to trench deposited samples, where the influence of organic additives, typically used in the electrolytic bath to produce defect-free filling of advanced geometries, on the copper microstructure was studied. With the addition of organic additives, depositions produced finer grained structures with an increased contribution from the microstructure of the trench sidewall seed layer, especially with increasing trench aspect ratio. In addition, the increased constraint of the copper, resulted in larger stresses within the features and higher twin densities. The core of this dissertation demonstrated the ability to alter the resulting Cu microstructure through variations in pulse electrodeposition parameters
    corecore