3,378 research outputs found

    A direct formulation for totally-corrective multi-class boosting

    Get PDF
    Boosting combines a set of moderately accurate weak classifiers to form a highly accurate predictor. Compared with binary boosting classification, multi-class boosting received less attention. We propose a novel multi-class boosting formulation here. Unlike most previous multi-class boosting algorithms which decompose a multi-boost problem into multiple independent binary boosting problems, we formulate a direct optimization method for training multi-class boosting. Moreover, by explicitly deriving the Lagrange dual of the formulated primal optimization problem, we design totally-corrective boosting using the column generation technique in convex optimization. At each iteration, all weak classifiers’ weights are updated. Our experiments on various data sets demonstrate that our direct multi-class boosting achieves competitive test accuracy compared with state-of-the-art multi-class boosting in the literature.Chunhua Shen and Zhihui Haohttp://cvpr2011.org/index.htm

    RandomBoost: Simplified Multi-class Boosting through Randomization

    Full text link
    We propose a novel boosting approach to multi-class classification problems, in which multiple classes are distinguished by a set of random projection matrices in essence. The approach uses random projections to alleviate the proliferation of binary classifiers typically required to perform multi-class classification. The result is a multi-class classifier with a single vector-valued parameter, irrespective of the number of classes involved. Two variants of this approach are proposed. The first method randomly projects the original data into new spaces, while the second method randomly projects the outputs of learned weak classifiers. These methods are not only conceptually simple but also effective and easy to implement. A series of experiments on synthetic, machine learning and visual recognition data sets demonstrate that our proposed methods compare favorably to existing multi-class boosting algorithms in terms of both the convergence rate and classification accuracy.Comment: 15 page

    Totally Corrective Multiclass Boosting with Binary Weak Learners

    Full text link
    In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms' Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to design totally-corrective multiclass algorithms by using the primal-dual optimization technique. Experiments on benchmark data sets suggest that our multiclass boosting can achieve a comparable generalization capability with state-of-the-art, but the convergence speed is much faster than stage-wise gradient descent boosting. In other words, the new totally corrective algorithms can maximize the margin more aggressively.Comment: 11 page

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc

    Totally corrective boosting algorithm and application to face recognition

    Get PDF
    Boosting is one of the most well-known learning methods for building highly accurate classifiers or regressors from a set of weak classifiers. Much effort has been devoted to the understanding of boosting algorithms. However, questions remain unclear about the success of boosting. In this thesis, we study boosting algorithms from a new perspective. We started our research by empirically comparing the LPBoost and AdaBoost algorithms. The result and the corresponding analysis show that, besides the minimum margin, which is directly and globally optimized in LPBoost, the margin distribution plays a more important role. Inspired by this observation, we theoretically prove that the Lagrange dual problems of AdaBoost, LogitBoost and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We further point out that AdaBoost approximately maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation based optimization algorithms, which are totally corrective. The new algorithm, which is termed AdaBoost-CG, exhibits almost identical classification results to those of standard stage-wise additive boosting algorithms, but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. The significance of margin distribution motivates us to design a new column-generation based algorithm that directly maximizes the average margin while minimizes the margin variance at the same time. We term this novel method MDBoost and show its superiority over other boosting-like algorithms. Moreover, consideration of the primal and dual problems together leads to important new insights into the characteristics of boosting algorithms. We then propose a general framework that can be used to design new boosting algorithms. A wide variety of machine learning problems essentially minimize a regularized risk functional. We show that the proposed boosting framework, termed AnyBoostTc, can accommodate various loss functions and different regularizers in a totally corrective optimization way. A large body of totally corrective boosting algorithms can actually be solved very efficiently, and no sophisticated convex optimization solvers are needed, by solving the primal rather than the dual. We also demonstrate that some boosting algorithms like AdaBoost can be interpreted in our framework, even their optimization is not totally corrective, . We conclude our study by applying the totally corrective boosting algorithm to a long-standing computer vision problem-face recognition. Linear regression face recognizers, constrained by two categories of locality, are selected and combined within both the traditional and totally corrective boosting framework. To our knowledge, it is the first time that linear-representation classifiers are boosted for face recognition. The instance-based weak classifiers bring some advantages, which are theoretically or empirically proved in our work. Benefiting from the robust weak learner and the advanced learning framework, our algorithms achieve the best reported recognition rates on face recognition benchmark datasets
    • …
    corecore