112 research outputs found

    A simple model of trees for unicellular maps

    Get PDF
    We consider unicellular maps, or polygon gluings, of fixed genus. A few years ago the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the "recursive part" of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, the Lehman-Walsh formula and the Goupil-Schaeffer formula. We also discuss several applications of our construction: we obtain a new proof of an identity related to covered maps due to Bernardi and the first author, and thanks to previous work of the second author, we give a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Finally, we show that our techniques apply partially to unicellular 3-constellations and to related objects that we call quasi-constellations.Comment: v5: minor revision after reviewers comments, 33 pages, added a refinement by degree of the Harer-Zagier formula and more details in some proof

    Bijective Enumeration of 3-Factorizations of an N-Cycle

    Full text link
    This paper is dedicated to the factorizations of the symmetric group. Introducing a new bijection for partitioned 3-cacti, we derive an el- egant formula for the number of factorizations of a long cycle into a product of three permutations. As the most salient aspect, our construction provides the first purely combinatorial computation of this number

    Bijections and symmetries for the factorizations of the long cycle

    Full text link
    We study the factorizations of the permutation (1,2,...,n)(1,2,...,n) into kk factors of given cycle types. Using representation theory, Jackson obtained for each kk an elegant formula for counting these factorizations according to the number of cycles of each factor. In the cases k=2,3k=2,3 Schaeffer and Vassilieva gave a combinatorial proof of Jackson's formula, and Morales and Vassilieva obtained more refined formulas exhibiting a surprising symmetry property. These counting results are indicative of a rich combinatorial theory which has remained elusive to this point, and it is the goal of this article to establish a series of bijections which unveil some of the combinatorial properties of the factorizations of (1,2,...,n)(1,2,...,n) into kk factors for all kk. We thereby obtain refinements of Jackson's formulas which extend the cases k=2,3k=2,3 treated by Morales and Vassilieva. Our bijections are described in terms of "constellations", which are graphs embedded in surfaces encoding the transitive factorizations of permutations

    Counting unicellular maps on non-orientable surfaces

    Get PDF
    A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we present a bijective link between unicellular maps on a non-orientable surface and unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a recurrence equation that leads to (new) explicit counting formulas for non-orientable unicellular maps of fixed topology. In particular, we give exact formulas for the precubic case (all vertices of degree 1 or 3), and asymptotic formulas for the general case, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained by the second author for the orientable case, but significant novelties are introduced: in particular we construct an involution which, in some sense, "averages" the effects of non-orientability

    Simple recurrence formulas to count maps on orientable surfaces

    Full text link
    We establish a simple recurrence formula for the number QgnQ_g^n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qgn(x)Q_g^n(x) where xx is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers Mgi,jM_g^{i,j} that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large gg. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula. Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in look to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.Comment: Version 3: We changed the title once again. We also corrected some misprints, gave another equivalent formulation of the main result in terms of vertices and faces (Thm. 5), and added complements on bivariate generating functions. Version 2: We extended the main result to include the ability to track the number of faces. The title of the paper has been changed accordingl
    • …
    corecore