18,359 research outputs found

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    A Constrained Sequential-Lamination Algorithm for the Simulation of Sub-Grid Microstructure in Martensitic Materials

    Full text link
    We present a practical algorithm for partially relaxing multiwell energy densities such as pertain to materials undergoing martensitic phase transitions. The algorithm is based on sequential lamination, but the evolution of the microstructure during a deformation process is required to satisfy a continuity constraint, in the sense that the new microstructure should be reachable from the preceding one by a combination of branching and pruning operations. All microstructures generated by the algorithm are in static and configurational equilibrium. Owing to the continuity constrained imposed upon the microstructural evolution, the predicted material behavior may be path-dependent and exhibit hysteresis. In cases in which there is a strict separation of micro and macrostructural lengthscales, the proposed relaxation algorithm may effectively be integrated into macroscopic finite-element calculations at the subgrid level. We demonstrate this aspect of the algorithm by means of a numerical example concerned with the indentation of an Cu-Al-Ni shape memory alloy by a spherical indenter.Comment: 27 pages with 9 figures. To appear in: Computer Methods in Applied Mechanics and Engineering. New version incorporates minor revisions from revie

    Deterministic Annealing and Nonlinear Assignment

    Full text link
    For combinatorial optimization problems that can be formulated as Ising or Potts spin systems, the Mean Field (MF) approximation yields a versatile and simple ANN heuristic, Deterministic Annealing. For assignment problems the situation is more complex -- the natural analog of the MF approximation lacks the simplicity present in the Potts and Ising cases. In this article the difficulties associated with this issue are investigated, and the options for solving them discussed. Improvements to existing Potts-based MF-inspired heuristics are suggested, and the possibilities for defining a proper variational approach are scrutinized.Comment: 15 pages, 3 figure

    Computing stationary free-surface shapes in microfluidics

    Full text link
    A finite-element algorithm for computing free-surface flows driven by arbitrary body forces is presented. The algorithm is primarily designed for the microfluidic parameter range where (i) the Reynolds number is small and (ii) force-driven pressure and flow fields compete with the surface tension for the shape of a stationary free surface. The free surface shape is represented by the boundaries of finite elements that move according to the stress applied by the adjacent fluid. Additionally, the surface tends to minimize its free energy and by that adapts its curvature to balance the normal stress at the surface. The numerical approach consists of the iteration of two alternating steps: The solution of a fluidic problem in a prescribed domain with slip boundary conditions at the free surface and a consecutive update of the domain driven by the previously determined pressure and velocity fields. ...Comment: Revised versio

    Approximating strongly correlated spin and fermion wavefunctions with correlator product states

    Get PDF
    We explore correlator product states for the approximation of correlated wavefunctions in arbitrary dimensions. We show that they encompass many interesting states including Laughlin's quantum Hall wavefunction, Huse and Elser's frustrated spin states, and Kitaev's toric code. We further establish their relation to common families of variational wavefunctions, such as matrix and tensor product states and resonating valence bond states. Calculations on the Heisenberg and spinless Hubbard models show that correlator product states capture both two-dimensional correlations (independent of system width) as well as non-trivial fermionic correlations (without sign problems). In one-dimensional simulations, correlator product states appear competitive with matrix product states with a comparable number of variational parameters, suggesting they may eventually provide a route to practically generalise the density matrix renormalisation group to higher dimensions.Comment: Table 1 expanded, Table 2 updated, optimization method discussed, discussions expanded in some sections, earlier work on similar wavefunctions included in text and references, see also (arXiv:0905.3898). 5 pages, 1 figure, 2 tables, submitted to Phys. Rev.

    OSQP: An Operator Splitting Solver for Quadratic Programs

    Full text link
    We present a general-purpose solver for convex quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix at almost every iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It can be configured to be division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior-point methods, and sometimes much more when factorization caching or warm start is used. OSQP has already shown a large impact with tens of thousands of users both in academia and in large corporations
    • …
    corecore