119 research outputs found

    Physical sketching tools and techniques for customized sensate surfaces

    Get PDF
    Sensate surfaces are a promising avenue for enhancing human interaction with digital systems due to their inherent intuitiveness and natural user interface. Recent technological advancements have enabled sensate surfaces to surpass the constraints of conventional touchscreens by integrating them into everyday objects, creating interactive interfaces that can detect various inputs such as touch, pressure, and gestures. This allows for more natural and intuitive control of digital systems. However, prototyping interactive surfaces that are customized to users' requirements using conventional techniques remains technically challenging due to limitations in accommodating complex geometric shapes and varying sizes. Furthermore, it is crucial to consider the context in which customized surfaces are utilized, as relocating them to fabrication labs may lead to the loss of their original design context. Additionally, prototyping high-resolution sensate surfaces presents challenges due to the complex signal processing requirements involved. This thesis investigates the design and fabrication of customized sensate surfaces that meet the diverse requirements of different users and contexts. The research aims to develop novel tools and techniques that overcome the technical limitations of current methods and enable the creation of sensate surfaces that enhance human interaction with digital systems.Sensorische OberflĂ€chen sind aufgrund ihrer inhĂ€renten IntuitivitĂ€t und natĂŒrlichen BenutzeroberflĂ€che ein vielversprechender Ansatz, um die menschliche Interaktionmit digitalen Systemen zu verbessern. Die jĂŒngsten technologischen Fortschritte haben es ermöglicht, dass sensorische OberflĂ€chen die BeschrĂ€nkungen herkömmlicher Touchscreens ĂŒberwinden, indem sie in AlltagsgegenstĂ€nde integriert werden und interaktive Schnittstellen schaffen, die diverse Eingaben wie BerĂŒhrung, Druck, oder Gesten erkennen können. Dies ermöglicht eine natĂŒrlichere und intuitivere Steuerung von digitalen Systemen. Das Prototyping interaktiver OberflĂ€chen, die mit herkömmlichen Techniken an die BedĂŒrfnisse der Nutzer angepasst werden, bleibt jedoch eine technische Herausforderung, da komplexe geometrische Formen und variierende GrĂ¶ĂŸen nur begrenzt berĂŒcksichtigt werden können. DarĂŒber hinaus ist es von entscheidender Bedeutung, den Kontext, in dem diese individuell angepassten OberflĂ€chen verwendet werden, zu berĂŒcksichtigen, da eine Verlagerung in Fabrikations-Laboratorien zum Verlust ihres ursprĂŒnglichen Designkontextes fĂŒhren kann. Zudem stellt das Prototyping hochauflösender sensorischer OberflĂ€chen aufgrund der komplexen Anforderungen an die Signalverarbeitung eine Herausforderung dar. Diese Arbeit erforscht dasDesign und die Fabrikation individuell angepasster sensorischer OberflĂ€chen, die den diversen Anforderungen unterschiedlicher Nutzer und Kontexte gerecht werden. Die Forschung zielt darauf ab, neuartigeWerkzeuge und Techniken zu entwickeln, die die technischen BeschrĂ€nkungen derzeitigerMethoden ĂŒberwinden und die Erstellung von sensorischen OberflĂ€chen ermöglichen, die die menschliche Interaktion mit digitalen Systemen verbessern

    Improvisatory music and painting interface

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Includes bibliographical references (p. 101-104).(cont.) theoretical section is accompanied by descriptions of historic and contemporary works that have influenced IMPI.Shaping collective free improvisations in order to obtain solid and succinct works with surprising and synchronized events is not an easy task. This thesis is a proposal towards that goal. It presents the theoretical, philosophical and technical framework of the Improvisatory Music and Painting Interface (IMPI) system: a new computer program for the creation of audiovisual improvisations performed in real time by ensembles of acoustic musicians. The coordination of these improvisations is obtained using a graphical language. This language is employed by one "conductor" in order to generate musical scores and abstract visual animations in real time. Doodling on a digital tablet following the syntax of the language allows both the creation of musical material with different levels of improvisatory participation from the ensemble and also the manipulation of the projected graphics in coordination with the music. The generated musical information is displayed in several formats on multiple computer screens that members of the ensemble play from. The digital graphics are also projected on a screen to be seen by an audience. This system is intended for a non-tonal, non-rhythmic, and texture-oriented musical style, which means that strong emphasis is put on the control of timbral qualities and continuum transitions. One of the main goals of the system is the translation of planned compositional elements (such as precise structure and synchronization between instruments) into the improvisatory domain. The graphics that IMPI generates are organic, fluid, vivid, dynamic, and unified with the music. The concept of controlled improvisation as well as the paradigm of the relationships between acoustic and visual material are both analyzed from an aesthetic point of view. TheHugo SolĂ­s GarcĂ­a.S.M

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Artificial Tactile System and Signal Processing for Haptic applications

    Get PDF
    Human have the ability to interact with the external environment through five main senses which are vision, hearing, smell, taste and touch. Most of all, the sensation like vision or hearing have been well developed and the use of various applications like TV, Camera, or artificial cochlear have been widely generalized. As the next steps, recently, the tactile sensor to mimic the tactile system of human have been attracted by many groups. Especially, after the development of Apple’s iPhone, the public interest about touch sensing applications have been increased explosively. Other researches for tactile sensing have focused on enhancing the performance of tactile sensor like the sensitivity, stability, response time and so on. As a result, there are some researches that the sensor performance of certain criteria is better than that of human tactile system. However, a human tactile system is not only very sensitive but also complex. In other words, ultimately, the tactile system mimicking the human tactile sensation should detect various parameters such as the pressure, temperature, hardness or roughness and also decide the psychological feeling like the pain by a hot material in touching or the smooth/roughness feeling in sliding the certain material. Therefore, in this thesis, it has been studied for the development of multifunctional tactile sensing system detecting various tactile parameters and deciding the kinds of psychological tactile feeling by measured stimulation. As the first step for the development of tactile system, we have studied the tactile sensor using ZnO nanowire. Therefore, in this chapter, the basic characteristics of ZnO nanowire are investigated to confirm the possibility for the tactile sensor. In addition, structural design factors of sensor units have been studied in order to enhance the sensitivity of ZnO nanowire-based tactile sensor. We have primarily demonstrated the effect of a square pattern array design in a pressure sensor using ZnO nanowires. Nanowires grown on the edge of cells can be bent easily because of growth direction, density of nanowires, and buckling effect. Since smaller square pattern arrays induce a higher circumference to cell area ratio, if one sensor unit consists of many micro-level square pattern arrays, the design enhances the piezoelectric efficiency and the sensitivity. As a result, 20um × 20um cell arrays showed three times higher pressure sensitivity than 250um × 250um cell array structures at a pressure range from 4kPa to 14kPa. The induced piezoelectric voltage with the same pressure level also increased drastically. Therefore, the smaller pattern array design is more appropriate for a high-sensitive pressure sensor than a simple one-body cell design for tactile systems, and it has the advantage of better power efficiency, which is also important for artificial tactile systems. Even if, in previous experiments, the possibility of piezoelectric materials as the tactile sensor and the method for the enhancement of pressure sensitivity are confirmed well, the tactile sensor for mimicking the human tactile sensation should measure various parameters as well as the pressure. However, many studies about ‘smooth-rough’ sensation depend on the machine learning technology with simple tactile sensors rather than developing the sensors that can measure various parameters like surface topography, hardness, quality of materials at the same time. Therefore, after the development of the pressure sensor, specific structures based on PDMS are proposed to measure and analyze above-mentioned parameters related to ‘smooth-rough’ decision, as like fingerprint of human. To find the optimized structure, three kinds of the structure shape (cone, cylinder and dome) are fabricated and the pressure sensitivity according to the shape are also measured. FEM simulation is also carried out to support the experimental result. Our tactile sensor with optimized dome structure (500um height) provides high shear force sensitivity, fast response time, stability, and durability. The high sensitivity about the shear force enables better the tactile sensor to measure the various surface information such as the pitch of pattern, the depth, the sliding velocity, the hardness and so on. In addition, after the study to measure the various surface information by dome structure, the research to measure the other surface information is also followed. In our previous study, we confirmed that the surface topography can be reconstructed by mapping the piezoelectric signals according to the location. In this research, to reduce the number of measurements from dozens to once and minimize the data loss at the empty space between adjacent sensors, the electrode array of Zig-Zag type is applied to the tactile sensor. As a result, with just one measurement, the surface topography of broad region can be successfully reconstructed by our tactile sensor as the high-resolution image. Additionally, the temperature sensor based on the resistive mechanism is fabricated between the Zig-Zag electrode lines to measures the temperature of surface materials when the tactile sensor rubs on the materials in real time. Over the development of the tactile sensing applications, the demand for an artificial system like human tactile sensation have been much more increased. Therefore, in this study, as a surrogate for human tactile sensation, we propose an artificial tactile sensing system based on the developed sensors in previous sections. For this, the piezoelectric tactile signal generated by touching and rubbing the material is transferred to DAQ system connected with our tactile sensor. First, the system decides whether the contacted material is dangerous or not. If dangerous like sharp or hot materials, the warning signal is generated by our artificial tactile system. If not, the sensor connected with the system rubs the materials and detects the roughness of the materials. Especially, the human test data related to ‘soft-rough’ detection is applied to a deep learning structure allowing personalization of the system, because tactile responses vary among humans. This approach could be applied to electronic devices with tactile emotional exchange capabilities, as well as various advanced digital experiences. In this thesis, human-like tactile sensing system based on the piezoelectric effect is successfully confirmed through various experiments. Although there are still some issues that need to be improved, this research is expected to be fundamental results for human-like tactile sensing system detecting a variety of the parameters such as the pressure, temperature, surface morphology, hardness, roughness and so on. In the future, through collaborative research with other fields like brain science, signal processing, we hope that this research can mimic psychological tactile sensations and communicate emotional exchange with external environment like real human skin.YList of Contents Abstract i List of contents iii List of tables vi List of figures vii Ⅰ. INTRODUCTION 1 1.1 Motivation 1 1.2 Various transduction mechanisms for the tactile sensor 5 1.2.1 Capacitive mechanism 5 1.2.2 Resistive mechanism 6 1.2.3 Triboelectric effect 7 1.2.4 Piezoelectric effect 9 1.3 Objectives 12 1.4 Reference 13 II. BASIC CHARACTERISTICS AND THE METHOD FOR ENHANC-ING THE PRESSURE SENSITIVITY OF THE TACTILE SENSOR BASED ON ZnO NANOWIRE 19 2.1 Introduction 19 2.2 Basic characteristics of ZnO nanowire 22 2.3 Device Fabrication 31 2.4 Morphological and Electrical characteristics 33 2.5 Pattern structure for enhanced for pressure sensitivity 38 2.6 Simulation result of piezoelectric effect for pattern structure 42 2.7 Reference 46 III. DOME STRUCTURE TO MEAUSRE THE SURFACE INFOR-MATION 52 3.1 Introduction 52 3.2 Basic characteristics of P(VDF-TrFE) 53 3.3 Device fabrication 61 3.4 Interaction mechanism between dome structure and surface material 63 3.5 Simulation and Experimental result comparing cone, cylinder, and dome structure 64 3.6 Simulation and Experimental result of the sensitivity enhancement ef-fect by dome structure 66 3.7 Depth measurement by tactile sensor with dome structure 72 3.8 Pattern of pitch by multi-array tactile sensor with dome structure 77 3.9 Hardness measurement by the tactile sensor with dome structure 79 3.10 Reference 83 IV. ZIG-ZAG ARRAYED TACTILE SENSOR BASED ON PIEZOE-LECTRIC-RESISTIVE MECHANISM TO DETECT THE SURFACE TOPOG-RAPHY AND TEMPERATURE 87 4.1 Introduction 87 4.2 Device fabrication 88 4.3 Piezoelectric characteristics of fabricated tactile sensor 90 4.4 Surface rendering method by the piezoelectric effect 95 4.5 Surface rendering result of 3D printed materials 96 4.6 Temperature sensing in sliding the high temperature material on Zig-Zag tactile sensor 99 4.7 Reference 103 V. TACTILE SENSING SYSTEM FOR PAIN AND SMOOTH/ROUGH DETECTION 105 5.1 Introduction 105 5.2 Components of the tactile sensing system 107 5.3 Artificial tactile sensing system for generating the pain warning 108 5.4 Artificial tactile sensing system for smooth/rough sensing 112 5.5 Reference 117 VⅠ. CONCLUSION 120DoctordCollectio

    Fieldwork - A Conceptual Methodology Linking Science and Art

    Get PDF
    Fieldwork - A Conceptual Methodology Linking Science and Art. This exegesis presents the outcomes of artistic fieldwork in the Arctic and the Antarctic - locations which are the focus of intensive scientific exploration and research. The primary fieldwork site for my research was the South Pole and fieldwork there in the austral summer of 2006/17 was completed under a US National Science Foundation Antarctic Artists and Writers Fellowship in collaboration with the IceCube Neutrino Observatory. This project researches interconnections between the aspirations, methodologies, and outcomes of scientific and artistic inquiry as demonstrated through the mode of fieldwork. The field provides a cleared space of work for comparative investigation of the methodologies and approaches of science and art. Artmaking and astrophysics are approached as two congruent practices of fieldwork. Both entail challenging logistics, the deployment of sensitive, hand-made and untried instruments, improvisation and adjustment to accommodate field conditions and unexpected contingencies, and comprehending and interpreting the resulting data. Objectivity is as a key aspect of both contemporary art and science, and instruments act as devices of constraint to reduce subjectivity in both. The conceptualisation of instruments as devices of constraint within both science and the visual arts proved to be an effective research strategy. This approach has allowed me to consider scientific instruments from an artist's perspective, to design and create my own instruments for deployment in conjunction with scientific instruments, to develop collaborations with scientists and to locate my research within an original analysis of aspects of contemporary art practice. The artistic outcomes of my fieldwork take a conceptual approach to making art connected to the Antarctic and Arctic environments that goes beyond the pictorial, narrative and didactic. The outcomes are analysed using original perspectives derived from scientific analysis. My approach has been to reconsider the terms 'field', 'noise', 'signal', 'pareidolia', 'artefact', 'instrument', 'transcription' and 'transduction'. These terms are used as lenses through which to examine contemporary artistic practice and the outcomes of my own research. It is argued that the circumscription of these concepts and the location of cultural and physical fields in which they can operate delineates a common ground between science and art

    Design of computational measuring system

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 2001.Includes bibliographical references (p. 85-86).This thesis introduces HandSCAPE, a computational measuring system that provides designers and workers with a fluid means of bridging physical measuring and three dimensional computer modeling. Using embedded orientation awareness and wireless communication, the HandSCAPE system first captures vector measurements using a digitally augmented tape measure, and then displays in real time the resulting dimensions in three dimensional computer graphics. With efficiency of human-scale interaction using a tangible user interface, prototype systems are applied for specific on-site space planning, packing configuration, and archaeological field excavation in order to give users in the field immediate access to computational information. Underlying technology for custom orientation sensing and simulating three-dimensional graphics, as well as a concept of digitally constructed physical space are described. The success of the second generation of the system is also equipped with configurable parameters to increase the usability.by Jae-Chol Lee.S.M

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Laser-induced forward transfer (LIFT) of water soluble polyvinyl alcohol (PVA) polymers for use as support material for 3D-printed structures

    Get PDF
    The additive microfabrication method of laser-induced forward transfer (LIFT) permits the creation of functional microstructures with feature sizes down to below a micrometre [1]. Compared to other additive manufacturing techniques, LIFT can be used to deposit a broad range of materials in a contactless fashion. LIFT features the possibility of building out of plane features, but is currently limited to 2D or 2ÂœD structures [2–4]. That is because printing of 3D structures requires sophisticated printing strategies, such as mechanical support structures and post-processing, as the material to be printed is in the liquid phase. Therefore, we propose the use of water-soluble materials as a support (and sacrificial) material, which can be easily removed after printing, by submerging the printed structure in water, without exposing the sample to more aggressive solvents or sintering treatments. Here, we present studies on LIFT printing of polyvinyl alcohol (PVA) polymer thin films via a picosecond pulsed laser source. Glass carriers are coated with a solution of PVA (donor) and brought into proximity to a receiver substrate (glass, silicon) once dried. Focussing of a laser pulse with a beam radius of 2 ”m at the interface of carrier and donor leads to the ejection of a small volume of PVA that is being deposited on a receiver substrate. The effect of laser pulse fluence , donor film thickness and receiver material on the morphology (shape and size) of the deposits are studied. Adhesion of the deposits on the receiver is verified via deposition on various receiver materials and via a tape test. The solubility of PVA after laser irradiation is confirmed via dissolution in de-ionised water. In our study, the feasibility of the concept of printing PVA with the help of LIFT is demonstrated. The transfer process maintains the ability of water solubility of the deposits allowing the use as support material in LIFT printing of complex 3D structures. Future studies will investigate the compatibility (i.e. adhesion) of PVA with relevant donor materials, such as metals and functional polymers. References: [1] A. PiquĂ© and P. Serra (2018) Laser Printing of Functional Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. [2] R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. PiquĂ© (2009) Laser decal transfer of freestanding microcantilevers and microbridges, Appl. Phys. A, vol. 97, no. 3, pp. 513–519. [3] C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, and D. Lohse (2015) Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., vol. 27, no. 27, pp. 4087–4092. [4] J. Luo et al. (2017) Printing Functional 3D Microdevices by Laser-Induced Forward Transfer, Small, vol. 13, no. 9, p. 1602553
    • 

    corecore