206 research outputs found

    Rateless Codes with Progressive Recovery for Layered Multimedia Delivery

    Full text link
    This paper proposes a novel approach, based on unequal error protection, to enhance rateless codes with progressive recovery for layered multimedia delivery. With a parallel encoding structure, the proposed Progressive Rateless codes (PRC) assign unequal redundancy to each layer in accordance with their importance. Each output symbol contains information from all layers, and thus the stream layers can be recovered progressively at the expected received ratios of output symbols. Furthermore, the dependency between layers is naturally considered. The performance of the PRC is evaluated and compared with some related UEP approaches. Results show that our PRC approach provides better recovery performance with lower overhead both theoretically and numerically

    Digital Fountain for Multi-node Aggregation of Data in Blockchains

    Get PDF
    abstract: Blockchain scalability is one of the issues that concerns its current adopters. The current popular blockchains have initially been designed with imperfections that in- troduce fundamental bottlenecks which limit their ability to have a higher throughput and a lower latency. One of the major bottlenecks for existing blockchain technologies is fast block propagation. A faster block propagation enables a miner to reach a majority of the network within a time constraint and therefore leading to a lower orphan rate and better profitability. In order to attain a throughput that could compete with the current state of the art transaction processing, while also keeping the block intervals same as today, a 24.3 Gigabyte block will be required every 10 minutes with an average transaction size of 500 bytes, which translates to 48600000 transactions every 10 minutes or about 81000 transactions per second. In order to synchronize such large blocks faster across the network while maintain- ing consensus by keeping the orphan rate below 50%, the thesis proposes to aggregate partial block data from multiple nodes using digital fountain codes. The advantages of using a fountain code is that all connected peers can send part of data in an encoded form. When the receiving peer has enough data, it then decodes the information to reconstruct the block. Along with them sending only part information, the data can be relayed over UDP, instead of TCP, improving upon the speed of propagation in the current blockchains. Fountain codes applied in this research are Raptor codes, which allow construction of infinite decoding symbols. The research, when applied to blockchains, increases success rate of block delivery on decode failures.Dissertation/ThesisMasters Thesis Computer Science 201

    STAIR: Practical AIMD Multirate Congestion Control

    Full text link
    Existing approaches for multirate multicast congestion control are either friendly to TCP only over large time scales or introduce unfortunate side effects, such as significant control traffic, wasted bandwidth, or the need for modifications to existing routers. We advocate a layered multicast approach in which steady-state receiver reception rates emulate the classical TCP sawtooth derived from additive-increase, multiplicative decrease (AIMD) principles. Our approach introduces the concept of dynamic stair layers to simulate various rates of additive increase for receivers with heterogeneous round-trip times (RTTs), facilitated by a minimal amount of IGMP control traffic. We employ a mix of cumulative and non-cumulative layering to minimize the amount of excess bandwidth consumed by receivers operating asynchronously behind a shared bottleneck. We integrate these techniques together into a congestion control scheme called STAIR which is amenable to those multicast applications which can make effective use of arbitrary and time-varying subscription levels.National Science Foundation (CAREER ANI-0093296, ANI-9986397

    Structured Random Linear Codes (SRLC): Bridging the Gap between Block and Convolutional Codes

    Get PDF
    Several types of AL-FEC (Application-Level FEC) codes for the Packet Erasure Channel exist. Random Linear Codes (RLC), where redundancy packets consist of random linear combinations of source packets over a certain finite field, are a simple yet efficient coding technique, for instance massively used for Network Coding applications. However the price to pay is a high encoding and decoding complexity, especially when working on GF(28)GF(2^8), which seriously limits the number of packets in the encoding window. On the opposite, structured block codes have been designed for situations where the set of source packets is known in advance, for instance with file transfer applications. Here the encoding and decoding complexity is controlled, even for huge block sizes, thanks to the sparse nature of the code and advanced decoding techniques that exploit this sparseness (e.g., Structured Gaussian Elimination). But their design also prevents their use in convolutional use-cases featuring an encoding window that slides over a continuous set of incoming packets. In this work we try to bridge the gap between these two code classes, bringing some structure to RLC codes in order to enlarge the use-cases where they can be efficiently used: in convolutional mode (as any RLC code), but also in block mode with either tiny, medium or large block sizes. We also demonstrate how to design compact signaling for these codes (for encoder/decoder synchronization), which is an essential practical aspect.Comment: 7 pages, 12 figure

    A digital fountain retrospective

    Full text link
    We introduced the concept of a digital fountain as a scalable approach to reliable multicast, realized with fast and practical erasure codes, in a paper published in ACM SIGCOMM '98. This invited editorial, on the occasion of the 50th anniversary of the SIG, reflects on the trajectory of work leading up to our approach, and the numerous developments in the field in the subsequent 21 years. We discuss advances in rateless codes, efficient implementations, applications of digital fountains in distributed storage systems, and connections to invertible Bloom lookup tables.Published versio

    Performance evaluation of multicast MISO-OFDM systems

    Get PDF
    In this paper, we analyze the performance of multicast orthogonal frequency division multiplexing (OFDM) systems with single and multiple transmit antennas. We show that the resource allocation that includes the subcarrier allocation, bit loading, and the precoding vector selection in the multiple-input single-output (MISO) case is a difficult optimization problem. Consequently, we propose suboptimal algorithms based on the maximization of the sum data rate and the maximization of the minimum user data rate criteria. For practical application, we consider a complete transmission chain by combining powerful erasure codes with the proposed algorithms. Using this scheme, we guarantee that each user receives the same amount of information to decode the same data. Simulation results show that, for both single-input single-output (SISO)-OFDM and MISO-OFDM cases, the proposed multicast OFDM systems achieve gains over the worst user case algorithm.FP6-IYTE wireless project and Euripides European project SMAR
    • …
    corecore