240 research outputs found

    Regular Conjugacy Classes in the Weyl Group and Integrable Hierarchies

    Full text link
    Generalized KdV hierarchies associated by Drinfeld-Sokolov reduction to grade one regular semisimple elements from non-equivalent Heisenberg subalgebras of a loop algebra \G\otimes{\bf C}[\lambda,\lambda^{-1}] are studied. The graded Heisenberg subalgebras containing such elements are labelled by the regular conjugacy classes in the Weyl group {\bf W}(\G) of the simple Lie algebra \G. A representative w\in {\bf W}(\G) of a regular conjugacy class can be lifted to an inner automorphism of \G given by w^=exp(2iπadI0/m)\hat w=\exp\left(2i\pi {\rm ad I_0}/m\right), where I0I_0 is the defining vector of an sl2sl_2 subalgebra of \G.The grading is then defined by the operator dm,I0=mλddλ+adI0d_{m,I_0}=m\lambda {d\over d\lambda} + {\rm ad} I_0 and any grade one regular element Λ\Lambda from the Heisenberg subalgebra associated to [w][w] takes the form Λ=(C++λC)\Lambda = (C_+ +\lambda C_-), where [I0,C]=(m1)C[I_0, C_-]=-(m-1) C_- and C+C_+ is included in an sl2sl_2 subalgebra containing I0I_0. The largest eigenvalue of adI0{\rm ad}I_0 is (m1)(m-1) except for some cases in F4F_4, E6,7,8E_{6,7,8}. We explain how these Lie algebraic results follow from known results and apply them to construct integrable systems.If the largest adI0{\rm ad} I_0 eigenvalue is (m1)(m-1), then using any grade one regular element from the Heisenberg subalgebra associated to [w][w] we can construct a KdV system possessing the standard \W-algebra defined by I0I_0 as its second Poisson bracket algebra. For \G a classical Lie algebra, we derive pseudo-differential Lax operators for those non-principal KdV systems that can be obtained as discrete reductions of KdV systems related to glngl_n. Non-abelian Toda systems are also considered.Comment: 44 pages, ENSLAPP-L-493/94, substantial revision, SWAT-95-77. (use OLATEX (preferred) or LATEX

    Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

    Get PDF
    The p×pp\times p matrix version of the rr-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra gl^prC[λ,λ1]\widehat{gl}_{pr}\otimes {\Complex}[\lambda, \lambda^{-1}]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algebra gl^pr+sC[λ,λ1]\widehat{gl}_{pr+s}\otimes {\Complex}[\lambda,\lambda^{-1}] using the natural embedding glprglpr+sgl_{pr}\subset gl_{pr+s} for ss any positive integer. The hierarchies obtained admit a description in terms of a p×pp\times p matrix pseudo-differential operator comprising an rr-KdV type positive part and a non-trivial negative part. This system has been investigated previously in the p=1p=1 case as a constrained KP system. In this paper the previous results are considerably extended and a systematic study is presented on the basis of the Drinfeld-Sokolov approach that has the advantage that it leads to local Poisson brackets and makes clear the conformal (W\cal W-algebra) structures related to the KdV type hierarchies. Discrete reductions and modified versions of the extended rr-KdV hierarchies are also discussed.Comment: 60 pages, plain TE

    On Matrix KP and Super-KP Hierarchies in the Homogeneous Grading

    Get PDF
    Constrained KP and super-KP hierarchies of integrable equations (generalized NLS hierarchies) are systematically produced through a Lie algebraic AKS-matrix framework associated to the homogeneous grading. The role played by different regular elements to define the corresponding hierarchies is analyzed as well as the symmetry properties under the Weyl group transformations. The coset structure of higher order hamiltonian densities is proven.\par For a generic Lie algebra the hierarchies here considered are integrable and essentially dependent on continuous free parameters. The bosonic hierarchies studied in \cite{{FK},{AGZ}} are obtained as special limit restrictions on hermitian symmetric-spaces.\par In the supersymmetric case the homogeneous grading is introduced consistently by using alternating sums of bosons and fermions in the spectral parameter power series.\par The bosonic hierarchies obtained from sl(3)^{\hat {sl(3)}} and the supersymmetric ones derived from the N=1N=1 affinization of sl(2)sl(2), sl(3)sl(3) and osp(12)osp(1|2) are explicitly constructed. \par An unexpected result is found: only a restricted subclass of the sl(3)sl(3) bosonic hierarchies can be supersymmetrically extended while preserving integrability.Comment: 36 pages, LaTe

    The Shapovalov determinant for the Poisson superalgebras

    Full text link
    Among simple Z-graded Lie superalgebras of polynomial growth, there are several which have no Cartan matrix but, nevertheless, have a quadratic even Casimir element C_{2}: these are the Lie superalgebra k^L(1|6) of vector fields on the (1|6)-dimensional supercircle preserving the contact form, and the series: the finite dimensional Lie superalgebra sh(0|2k) of special Hamiltonian fields in 2k odd indeterminates, and the Kac--Moody version of sh(0|2k). Using C_{2} we compute N. Shapovalov determinant for k^L(1|6) and sh(0|2k), and for the Poisson superalgebras po(0|2k) associated with sh(0|2k). A. Shapovalov described irreducible finite dimensional representations of po(0|n) and sh(0|n); we generalize his result for Verma modules: give criteria for irreducibility of the Verma modules over po(0|2k) and sh(0|2k)

    Polar orthogonal representations of real reductive algebraic groups

    Full text link
    We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial structural theory of polar orthogonal representations of real reductive algebraic groups which slightly generalizes some results of the structural theory of real reductive Lie algebras.Comment: 23 pages, Late
    corecore