26,040 research outputs found

    Cooperative Transmission for Wireless Relay Networks Using Limited Feedback

    Full text link
    To achieve the available performance gains in half-duplex wireless relay networks, several cooperative schemes have been earlier proposed using either distributed space-time coding or distributed beamforming for the transmitter without and with channel state information (CSI), respectively. However, these schemes typically have rather high implementation and/or decoding complexities, especially when the number of relays is high. In this paper, we propose a simple low-rate feedback-based approach to achieve maximum diversity with a low decoding and implementation complexity. To further improve the performance of the proposed scheme, the knowledge of the second-order channel statistics is exploited to design long-term power loading through maximizing the receiver signal-to-noise ratio (SNR) with appropriate constraints. This maximization problem is approximated by a convex feasibility problem whose solution is shown to be close to the optimal one in terms of the error probability. Subsequently, to provide robustness against feedback errors and further decrease the feedback rate, an extended version of the distributed Alamouti code is proposed. It is also shown that our scheme can be generalized to the differential transmission case, where it can be applied to wireless relay networks with no CSI available at the receiver.Comment: V1: 27 pages, 1 column, 6 figures. Submitted to IEEE Transactions on Signal Processing, February 2, 2009. V2: 30 pages, 1 column, 8 figures. Revised version submitted to IEEE Transactions on Signal Processing, July 23, 200

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Successive DF relaying: MS-DIS aided interference suppression and three-stage concatenated architecture design

    No full text
    Conventional single-relay aided two-phase cooperative networks employing coherent detection algorithms incur a significant 50% throughput loss. Furthermore, it is unrealistic to expect that in addition to the task of relaying, the relay-station would dedicate further precious resources to the estimation of the source-relay channel in support of coherent detection. In order to circumvent these problems, we propose decode and-forward (DF) based successive relaying employing noncoherent detection schemes. A crucial challenge in this context is that of suppressing the successive relaying induced interference, despite dispensing with any channel state information (CSI). We overcome this challenge by introducing a novel adaptive Newton algorithm based multiple-symbol differential interference suppression (MS-DIS) scheme. Correspondingly, a three-stage concatenated transceiver architecture is devised. We demonstrate that our proposed system is capable of near-error-free transmissions at low signal-to-noise ratios

    A Practical Cooperative Multicell MIMO-OFDMA Network Based on Rank Coordination

    Get PDF
    An important challenge of wireless networks is to boost the cell edge performance and enable multi-stream transmissions to cell edge users. Interference mitigation techniques relying on multiple antennas and coordination among cells are nowadays heavily studied in the literature. Typical strategies in OFDMA networks include coordinated scheduling, beamforming and power control. In this paper, we propose a novel and practical type of coordination for OFDMA downlink networks relying on multiple antennas at the transmitter and the receiver. The transmission ranks, i.e.\ the number of transmitted streams, and the user scheduling in all cells are jointly optimized in order to maximize a network utility function accounting for fairness among users. A distributed coordinated scheduler motivated by an interference pricing mechanism and relying on a master-slave architecture is introduced. The proposed scheme is operated based on the user report of a recommended rank for the interfering cells accounting for the receiver interference suppression capability. It incurs a very low feedback and backhaul overhead and enables efficient link adaptation. It is moreover robust to channel measurement errors and applicable to both open-loop and closed-loop MIMO operations. A 20% cell edge performance gain over uncoordinated LTE-A system is shown through system level simulations.Comment: IEEE Transactions or Wireless Communications, Accepted for Publicatio

    Iterative amplitude/phase multiple-symbol differential sphere detection for DAPSK modulated transmissions

    No full text
    Differentially encoded and non-coherently detected transceivers exhibit a low complexity, since they dispense with complex channel estimation. Albeit this is achieved at the cost of requiring an increased transmit power, they are particularly beneficial, for example in cooperative communication scenarios, where the employment of channel estimation for all the mobile-to-mobile links may become unrealistic. In pursuit of high bandwidth efficiency, differential amplitude and phase shift keying (DAPSK) was devised using constellations of multiple concentric rings. In order to increase resilience against the typical high-Doppler-induced performance degradation of DAPSK and/or enhance the maximum achievable error-free transmission rate for DAPSK modulated systems, multiple-symbol differential detection (MSDD) may be invoked. However, the complexity of the maximum-a-posteriori (MAP) MSDD increases exponentially with the detection window size and hence may become excessive upon increasing the window size, especially in the context of iterative detection aided channel coded system. In order to circumvent this excessive complexity, we conceive a decomposed two-stage iterative amplitude and phase (A/P) detection framework, where the challenge of having a non-constant-modulus constellation is tackled with the aid of a specifically designed information exchange between the independent A/P detection stages, thus allowing the incorporation of reduced-complexity sphere detection (SD). Consequently, a near-MAP-MSDD performance can be achieved at a significantly reduced complexity, which may be five orders of magnitude lower than that imposed by the traditional MAP-MSDD in the 16-DAPSK scenario considered

    Transmit Diversity Assisted Space Shift Keying for Colocated and Distributed/Cooperative MIMO Elements

    No full text
    Space Shift Keying (SSK) modulation is a recently proposed MIMO technique, which activates only a single transmit antenna during each time slot and uses the specific index of the activated transmit antenna to implicitly convey information. Activating a single antenna is beneficial in terms of eliminating the inter-channel interference, and mitigates the peak-to-mean power ratio, while avoiding the need for synchronisation among transmit antennas. However, this benefit is achieved at a sacrifice, since the transmit diversity gain potential of the multiple transmit antennas is not fully exploited in existing SSK assisted systems. Furthermore, a high SSK throughput requires the transmitter to employ a high number of transmit antennas, which is not always practical. Hence, we propose four algorithms, namely open-loop Space Time Space Shift Keying (ST-SSK), closed-loop feedback-aided phase rotation, feedback-aided power allocation, and cooperative ST-SSK, for the sake of achieving a diversity gain. The performance improvements of the proposed schemes are demonstrated by Monte-Carlo simulations for spatially independent Rayleigh fading channels. Their robustness against channel estimation errors is also considered. We advocate the proposed ST-SSK techniques, which are capable of achieving a transmit diversity gain of about 10 dB at a BER of 10-5, at a cost of imposing a moderate throughput loss dedicated to a modest feedback overhead. Furthermore, our proposed ST-SSK scheme lends itself to efficient communication, because the deleterious effects of deep shadow fading no longer impose spatial correlation on the signals received by the antennas, which cannot be readily avoided by co-located antenna elements
    corecore