4,370 research outputs found

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19

    FPC: A New Approach to Firewall Policies Compression

    Get PDF
    Firewalls are crucial elements that enhance network security by examining the field values of every packet and deciding whether to accept or discard a packet according to the firewall policies. With the development of networks, the number of rules in firewalls has rapidly increased, consequently degrading network performance. In addition, because most real-life firewalls have been plagued with policy conflicts, malicious traffics can be allowed or legitimate traffics can be blocked. Moreover, because of the complexity of the firewall policies, it is very important to reduce the number of rules in a firewall while keeping the rule semantics unchanged and the target firewall rules conflict-free. In this study, we make three major contributions. First, we present a new approach in which a geometric model, multidimensional rectilinear polygon, is constructed for the firewall rules compression problem. Second, we propose a new scheme, Firewall Policies Compression (FPC), to compress the multidimensional firewall rules based on this geometric model. Third, we conducted extensive experiments to evaluate the performance of the proposed method. The experimental results demonstrate that the FPC method outperforms the existing approaches, in terms of compression ratio and efficiency while maintaining conflict-free firewall rules

    FPC: A New Approach to Firewall Policies Compression

    Get PDF
    Firewalls are crucial elements that enhance network security by examining the field values of every packet and deciding whether to accept or discard a packet according to the firewall policies. With the development of networks, the number of rules in firewalls has rapidly increased, consequently degrading network performance. In addition, because most real-life firewalls have been plagued with policy conflicts, malicious traffics can be allowed or legitimate traffics can be blocked. Moreover, because of the complexity of the firewall policies, it is very important to reduce the number of rules in a firewall while keeping the rule semantics unchanged and the target firewall rules conflict-free. In this study, we make three major contributions. First, we present a new approach in which a geometric model, multidimensional rectilinear polygon, is constructed for the firewall rules compression problem. Second, we propose a new scheme, Firewall Policies Compression (FPC), to compress the multidimensional firewall rules based on this geometric model. Third, we conducted extensive experiments to evaluate the performance of the proposed method. The experimental results demonstrate that the FPC method outperforms the existing approaches, in terms of compression ratio and efficiency while maintaining conflict-free firewall rules

    Development of advanced digital techniques for data acquisition processing and communication Interim scientific report

    Get PDF
    Image correlation and computerized simulation applied to data acquisition and imaging technique
    • …
    corecore