76,916 research outputs found

    Deep Decision Trees for Discriminative Dictionary Learning with Adversarial Multi-Agent Trajectories

    Full text link
    With the explosion in the availability of spatio-temporal tracking data in modern sports, there is an enormous opportunity to better analyse, learn and predict important events in adversarial group environments. In this paper, we propose a deep decision tree architecture for discriminative dictionary learning from adversarial multi-agent trajectories. We first build up a hierarchy for the tree structure by adding each layer and performing feature weight based clustering in the forward pass. We then fine tune the player role weights using back propagation. The hierarchical architecture ensures the interpretability and the integrity of the group representation. The resulting architecture is a decision tree, with leaf-nodes capturing a dictionary of multi-agent group interactions. Due to the ample volume of data available, we focus on soccer tracking data, although our approach can be used in any adversarial multi-agent domain. We present applications of proposed method for simulating soccer games as well as evaluating and quantifying team strategies.Comment: To appear in 4th International Workshop on Computer Vision in Sports (CVsports) at CVPR 201

    Deliverable 2.2.1: Online Dictionary Learning from Big Data Using Accelerated Stochastic Approximation Algorithms

    Get PDF
    Applications involving large-scale dictionary learning tasks motivate well online optimization algorithms for generally non-convex and non-smooth problems. In this big data context, the present paper develops an online learning framework by jointly leveraging the stochastic approximation paradigm with first-order acceleration schemes. The generally non-convex objective evaluated online at the resultant iterates enjoys quadratic rate of convergence. The generality of the novel approach is demonstrated in two online learning applications: (i) Online linear regression using the total least-squares approach; and, (ii) a semi-supervised dictionary learning approach to network-wide link load tracking and imputation of real data with missing entries. In both cases, numerical tests highlight the potential of the proposed online framework for big data network analytics

    Online dictionary learning from big data using accelerated stochastic approximation algorithms

    Get PDF
    Applications involving large-scale dictionary learning tasks motivate well online optimization algorithms for generally non-convex and non-smooth problems. In this big data context, the present paper develops an online learning framework by jointly leveraging the stochastic approximation paradigm with first-order acceleration schemes. The generally non-convex objective evaluated online at the resultant iterates enjoys quadratic rate of convergence. The generality of the novel approach is demonstrated in two online learning applications: (i) Online linear regression using the total least-squares approach; and, (ii) a semi-supervised dictionary learning approach to network-wide link load tracking and imputation of real data with missing entries. In both cases, numerical tests highlight the potential of the proposed online framework for big data network analytics

    Dictionary Learning under Symmetries via Group Representations

    Full text link
    The dictionary learning problem can be viewed as a data-driven process to learn a suitable transformation so that data is sparsely represented directly from example data. In this paper, we examine the problem of learning a dictionary that is invariant under a pre-specified group of transformations. Natural settings include Cryo-EM, multi-object tracking, synchronization, pose estimation, etc. We specifically study this problem under the lens of mathematical representation theory. Leveraging the power of non-abelian Fourier analysis for functions over compact groups, we prescribe an algorithmic recipe for learning dictionaries that obey such invariances. We relate the dictionary learning problem in the physical domain, which is naturally modelled as being infinite dimensional, with the associated computational problem, which is necessarily finite dimensional. We establish that the dictionary learning problem can be effectively understood as an optimization instance over certain matrix orbitopes having a particular block-diagonal structure governed by the irreducible representations of the group of symmetries. This perspective enables us to introduce a band-limiting procedure which obtains dimensionality reduction in applications. We provide guarantees for our computational ansatz to provide a desirable dictionary learning outcome. We apply our paradigm to investigate the dictionary learning problem for the groups SO(2) and SO(3). While the SO(2)-orbitope admits an exact spectrahedral description, substantially less is understood about the SO(3)-orbitope. We describe a tractable spectrahedral outer approximation of the SO(3)-orbitope, and contribute an alternating minimization paradigm to perform optimization in this setting. We provide numerical experiments to highlight the efficacy of our approach in learning SO(3)-invariant dictionaries, both on synthetic and on real world data.Comment: 29 pages, 2 figure

    Online Learning Discriminative Dictionary with Label Information for Robust Object Tracking

    Get PDF
    A supervised approach to online-learn a structured sparse and discriminative representation for object tracking is presented. Label information from training data is incorporated into the dictionary learning process to construct a robust and discriminative dictionary. This is accomplished by adding an ideal-code regularization term and classification error term to the total objective function. By minimizing the total objective function, we learn the high quality dictionary and optimal linear multiclassifier jointly using iterative reweighed least squares algorithm. Combined with robust sparse coding, the learned classifier is employed directly to separate the object from background. As the tracking continues, the proposed algorithm alternates between robust sparse coding and dictionary updating. Experimental evaluations on the challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of effectiveness, accuracy, and robustness
    corecore