3,082 research outputs found

    Inferring Power Grid Information with Power Line Communications: Review and Insights

    Full text link
    High-frequency signals were widely studied in the last decade to identify grid and channel conditions in PLNs. PLMs operating on the grid's physical layer are capable of transmitting such signals to infer information about the grid. Hence, PLC is a suitable communication technology for SG applications, especially suited for grid monitoring and surveillance. In this paper, we provide several contributions: 1) a classification of PLC-based applications; 2) a taxonomy of the related methodologies; 3) a review of the literature in the area of PLC Grid Information Inference (GII); and, insights that can be leveraged to further advance the field. We found research contributions addressing PLMs for three main PLC-GII applications: topology inference, anomaly detection, and physical layer key generation. In addition, various PLC-GII measurement, processing, and analysis approaches were found to provide distinctive features in measurement resolution, computation complexity, and analysis accuracy. We utilize the outcome of our review to shed light on the current limitations of the research contributions and suggest future research directions in this field.Comment: IEEE Communication Surveys and Tutorials Journa

    Intelligent Machining Systems

    Get PDF
    Machining is one of the most widespread manufacturing processes and plays a critical role in industries. As a matter of fact, machine tools are often called mother machines as they are used to produce other machines and production plants. The continuous development of innovative materials and the increasing competitiveness are two of the challenges that nowadays manufacturing industries have to cope with. The increasing attention to environmental issues and the rising costs of raw materials drive the development of machining systems able to continuously monitor the ongoing process, identify eventual arising problems and adopt appropriate countermeasures to resolve or prevent these issues, leading to an overall optimization of the process. This work presents the development of intelligent machining systems based on in-process monitoring which can be implemented on production machines in order to enhance their performances. Therefore, some cases of monitoring systems developed in different fields, and for different applications, are presented in order to demonstrate the functions which can be enabled by the adoption of these systems. Design and realization of an advanced experimental machining testbed is presented in order to give an example of a machine tool retrofit aimed to enable advanced monitoring and control solutions. Finally, the implementation of a data-driven simulation of the machining process is presented. The modelling and simulation phases are presented and discussed. So, the model is applied to data collected during an experimental campaign in order to tune it. The opportunities enabled by integrating monitoring systems with simulation are presented with preliminary studies on the development of two virtual sensors for the material conformance and cutting parameter estimation during machining processes

    Economic Analysis of Variable Speed Drive Control Through Profinet Technology on Distributed Control System: A Case Study in Essential Oil Processing Factories

    Get PDF
    Electrical equipment in essential oil processing plants is generally dominated by electric motor loads. In today's digital era, global competition and technological advances encourage factories to increase the efficiency and reliability of their production equipment. One way of efficiency is to use a variable speed drive (VSD). The existence of Profinet technology as a network protocol between the control equipment and the VSD allows users to increase system reliability while increasing energy use efficiency. Even so, there are still many factories that are hesitant to use this technology in their automation systems. Many low to medium-sized factories still use traditional control methods such as hardwired. This method is considered more reliable, and inexpensive compared to using Profinet technology. Cost-benefit analysis is carried out to prove this paradigm. At the same time provides certainty that the investment costs incurred in building the system provide added value for production equipment. From this research, it is proven that the use of Profinet technology in addition to providing savings on investment costs also provides benefits from a technical perspective. This technology also allows the implementation of condition-based monitoring systems for electric motors in production equipment. Which in turn can increase the performance and service life of the machine

    Upgrading the Power Grid Functionalities with Broadband Power Line Communications: Basis, Applications, Current Trends and Challenges

    Get PDF
    This article reviews the basis and the main aspects of the recent evolution of Broadband Power Line Communications (BB-PLC or, more commonly, BPL) technologies. The article starts describing the organizations and alliances involved in the development and evolution of BPL systems, as well as the standardization institutions working on PLC technologies. Then, a short description of the technical foundation of the recent proposed technologies and a comparison of the main specifications are presented; the regulatory activities related to the limits of emissions and immunity are also addressed. Finally, some representative applications of BPL and some selected use cases enabled by these technologies are summarized, together with the main challenges to be faced.This work was financially supported in part by the Basque Government under the grants IT1426-22, PRE_2021_1_0006, and PRE_2021_1_0051, and by the Spanish Government under the grants PID2021-124706OB-I00 and RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”)

    A survey on wireless body area networks for eHealthcare systems in residential environments

    Get PDF
    The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments

    Power line communications: an implementation of a real time control architecture for smart grid

    Get PDF
    Negli ultimi anni è aumentata la presenza di risorse energetiche distribuite (DERs) nella rete elettrica. La visione della ``rete intelligente'' (Smart Grid) cerca di introdurre un'infrastruttura di controllo e di comunicazione di tipo distribuito in modo da sfruttare le potenzialità delle DERs e quindi potenziare e modernizzare la rete di distribuzione attuale. Applicandolo alle reti a bassa tensione, la cosiddetta ``Smart Microgrids'', si è sviluppato un banco di prova (testbed) che permette di dimostrare tecniche di riduzione delle perdite di distribuzione. La soluzione adottata bilancia localmente la potenza reattiva della microgrid attraverso il controllo delle risorse locali ottenendo una riduzione della corrente necessaria per alimentare la rete. Inoltre, vengono analizzati i vantaggi nell'usare la linea elettrica come mezzo di comunicazione e vengono evidenziati alcuni standard di comunicazion

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Advanced security aspects on Industrial Control Network.

    Get PDF
    Security threats are one of the main problems of this computer-based era. All systems making use of information and communication technologies (ICT) are prone to failures and vulnerabilities that can be exploited by malicious software and agents. In the latest years, Industrial Critical Installations started to use massively network interconnections as well, and what it is worst they came in contact with the public network, i.e. with Internet. Industrial networks are responsible for process and manufacturing operations of almost every scale, and as a result the successful penetration of a control system network can be used to directly impact those processes. Consequences could potentially range from relatively benign disruptions, such as the disruption of the operation (taking a facility offline), the alteration of an operational process (changing the formula of a chemical process), all the way to deliberate acts of sabotage that are intended to cause harm. The interconnectivity of Industrial Control Systems with corporate networks and the Internet has significantly increased the threats to critical infrastructure assets. Meanwhile, traditional IT security solutions such as firewalls, intrusion detection systems and antivirus software are relatively ineffective against attacks that specifically target vulnerabilities in SCADA protocols. This presents presents an innovative approach to Intrusion Detection in SCADA systems based on the concept of Critical State Analysis and State Proximity. The theoretical framework is supported by tests conducted with an Intrusion Detection System prototype implementing the proposed detection approach
    corecore