664 research outputs found

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead

    Methodologies and Toolflows for the Predictable Design of Reliable and Low-Power NoCs

    Get PDF
    There is today the unmistakable need to evolve design methodologies and tool ows for Network-on-Chip based embedded systems. In particular, the quest for low-power requirements is nowadays a more-than-ever urgent dilemma. Modern circuits feature billion of transistors, and neither power management techniques nor batteries capacity are able to endure the increasingly higher integration capability of digital devices. Besides, power concerns come together with modern nanoscale silicon technology design issues. On one hand, system failure rates are expected to increase exponentially at every technology node when integrated circuit wear-out failure mechanisms are not compensated for. However, error detection and/or correction mechanisms have a non-negligible impact on the network power. On the other hand, to meet the stringent time-to-market deadlines, the design cycle of such a distributed and heterogeneous architecture must not be prolonged by unnecessary design iterations. Overall, there is a clear need to better discriminate reliability strategies and interconnect topology solutions upfront, by ranking designs based on power metric. In this thesis, we tackle this challenge by proposing power-aware design technologies. Finally, we take into account the most aggressive and disruptive methodology for embedded systems with ultra-low power constraints, by migrating NoC basic building blocks to asynchronous (or clockless) design style. We deal with this challenge delivering a standard cell design methodology and mainstream CAD tool ows, in this way partially relaxing the requirement of using asynchronous blocks only as hard macros

    Improving Network Performance Through Endpoint Diagnosis And Multipath Communications

    Get PDF
    Components of networks, and by extension the internet can fail. It is, therefore, important to find the points of failure and resolve existing issues as quickly as possible. Resolution, however, takes time and its important to maintain high quality of service (QoS) for existing clients while it is in progress. In this work, our goal is to provide clients with means of avoiding failures if/when possible to maintain high QoS while enabling them to assist in the diagnosis process to speed up the time to recovery. Fixing failures relies on first detecting that there is one and then identifying where it occurred so as to be able to remedy it. We take a two-step approach in our solution. First, we identify the entity (Client, Server, Network) responsible for the failure. Next, if a failure is identified as network related additional algorithms are triggered to detect the device responsible. To achieve the first step, we revisit the question: how much can you infer about a failure using TCP statistics collected at one of the endpoints in a connection? Using an agent that captures TCP statistics at one of the end points we devise a classification algorithm that identifies the root cause of failures. Using insights derived from this classification algorithm we identify dominant TCP metrics that indicate where/why problems occur. If/when a failure is identified as a network related problem, the second step is triggered, where the algorithm uses additional information that is collected from ``failed\u27\u27 connections to identify the device which resulted in the failure. Failures are also disruptive to user\u27s performance. Resolution may take time. Therefore, it is important to be able to shield clients from their effects as much as possible. One option for avoiding problems resulting from failures is to rely on multiple paths (they are unlikely to go bad at the same time). The use of multiple paths involves both selecting paths (routing) and using them effectively. The second part of this thesis explores the efficacy of multipath communication in such situations. It is expected that multi-path communications have monetary implications for the ISP\u27s and content providers. Our solution, therefore, aims to minimize such costs to the content providers while significantly improving user performance

    Secure Time-Aware Provenance for Distributed Systems

    Get PDF
    Operators of distributed systems often find themselves needing to answer forensic questions, to perform a variety of managerial tasks including fault detection, system debugging, accountability enforcement, and attack analysis. In this dissertation, we present Secure Time-Aware Provenance (STAP), a novel approach that provides the fundamental functionality required to answer such forensic questions – the capability to “explain” the existence (or change) of a certain distributed system state at a given time in a potentially adversarial environment. This dissertation makes the following contributions. First, we propose the STAP model, to explicitly represent time and state changes. The STAP model allows consistent and complete explanations of system state (and changes) in dynamic environments. Second, we show that it is both possible and practical to efficiently and scalably maintain and query provenance in a distributed fashion, where provenance maintenance and querying are modeled as recursive continuous queries over distributed relations. Third, we present security extensions that allow operators to reliably query provenance information in adversarial environments. Our extensions incorporate tamper-evident properties that guarantee eventual detection of compromised nodes that lie or falsely implicate correct nodes. Finally, the proposed research results in a proof-of-concept prototype, which includes a declarative query language for specifying a range of useful provenance queries, an interactive exploration tool, and a distributed provenance engine for operators to conduct analysis of their distributed systems. We discuss the applicability of this tool in several use cases, including Internet routing, overlay routing, and cloud data processing

    Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols

    Get PDF
    A Wireless Sensor Network (WSN) consists of small, low cost, and low energy sensor nodes that cooperatively monitor physical quantities, control actuators, and perform data processing tasks. A network may consist of thousands of randomly deployed self-conïŹgurable nodes that operate autonomously to form a multihop topology. This Thesis focuses on Quality of Service (QoS) in low-energy WSNs that aim at several years operation time with small batteries. As a WSN may include both critical and non-critical control and monitoring applications, QoS is needed to make intelligent, content specific trade-offs between energy and network performance. The main research problem is defining and implementing QoS with constrained energy budget, processing power, communication bandwidth, and data and program memories. The problem is approached via protocol designs and algorithms. These are verified with simulations and with measurements in practical deployments. This Thesis defines QoS for WSNs with quantifiable metrics to allow measuring and managing the network performance. The definition is used as a basis for QoS routing protocol and Medium Access Control (MAC) schemes, comprising dynamic capacity allocation algorithm and QoS support layer. Dynamic capacity allocation is targeted at reservation based MACs, whereas the QoS support layer operates on contention based MACs. Instead of optimizing the protocols for a certain use case, the protocols allow conïŹgurable QoS based on application specific requirements. Finally, this Thesis designs sensor self-diagnostics and diagnostics analysis tool for verifying network performance. Compared to the related proposals on in-network sensor diagnostics, the diagnostics also detects performance problems and identifies reasons for the issues thus allowing the correction of problems. The results show that the developed protocols allow a clear trade-off between energy, latency, throughput, and reliability aspects of QoS while incurring a minimal overhead. The feasibility of results for extremely resource constrained WSNs is verified with the practical implementation with a prototype hardware platform having only few Million Instructions Per Second (MIPS) of processing power and less than a hundred kBs data and program memories. The results of this Thesis can be used in the WSN research, development, and implementation in general. The developed QoS deïŹnition, protocols, and diagnostics tools can be used separately or adapted to other applications and protocols

    Cognitive Radio for Medical Applications

    Get PDF
    This report presents a cognitive radio network that optimizes routing to preserve battery capacity while maintaining an acceptable signal quality. This is implemented by collecting data on the current link quality and battery charges of the nodes in the network and by performing a routing algorithm to optimize the signal quality of the links and the battery life of the nodes. The network performs the entire optimization process successfully 87.5% of 40 test trials
    • 

    corecore