199 research outputs found

    A Fuzzy Two-warehouse Inventory Model for Single Deteriorating Item with Selling-Price-Dependent Demand and Shortage under Partial-Backlogged condition

    Get PDF
    In this paper we have developed an inventory model for a single deteriorating item with two separate storage facilities (one is owned warehouse (OW) and the other a rented warehouse (RW)) and in which demand is selling- price dependent. Shortage is allowed and is partially backlogged with a rate dependent on the duration of waiting time up to the arrival of next lot. It is assumed that the holding cost of the rented warehouse is higher than that of owned warehouse. As demand, selling- price, holding- cost, shortage, lost- sale, deterioration- rate are uncertain in nature, we consider them as triangular fuzzy numbers and developed the model for fuzzy total cost function and is defuzzified by using Signed Distance and Centroid methods. In order to validate the proposed model, we compare the results of crisp and fuzzy models through a numerical example and based on the example the effect of different parameters have been rigorously studied by sensitivity analysis taking one parameter at a time keeping the other parameters unchanged

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    An optimization of an inventory model of decaying-lot depleted by declining market demand and extended with discretely variable holding costs

    Get PDF
    Inventory management is considered as major concerns of every organization. In inventory holding, many steps are taken by managers that result a cost involved in this row. This cost may not be constant in nature during time horizon in which perishable stock is held. To investigate on such a case, this study proposes an optimization of inventory model where items deteriorate in stock conditions. To generalize the decaying conditions based on location of warehouse and conditions of storing, the rate of deterioration follows the Weibull distribution function. The demand of fresh item is declining with time exponentially (because no item can always sustain top place in the list of consumers’ choice practically e.g. FMCG). Shortages are allowed and backlogged, partially. Conditions for global optimality and uniqueness of the solutions are derived, separately. The results of some numerical instances are analyzed under various conditions

    A periodic review inventory model with stock dependent demand, permissible delay in payment and price discount on backorders

    Get PDF
    In this paper we study a periodic review inventory model with stock dependent demand. When stock on hand is zero, the inventory manager offers a price discount to customers who are willing to backorder their demand. Permissible delay in payments allowed to the inventory manager is also taken into account. Numerical examples are cited to illustrate the model

    A two-storage model for deteriorating items with holding cost under inflation and Genetic Algorithms

    Full text link
    A deterministic inventory model has been developed for deteriorating items and Genetic Algorithms (GA) having a ramp type demands with the effects of inflation with two-storage facilities. The owned warehouse (OW) has a fixed capacity of W units; the rented warehouse (RW) has unlimited capacity. Here, we assumed that the inventory holding cost in RW is higher than those in OW. Shortages in inventory are allowed and partially backlogged and Genetic Algorithms (GA) it is assumed that the inventory deteriorates over time at a variable deterioration rate. The effect of inflation has also been considered for various costs associated with the inventory system and Genetic Algorithms (GA). Numerical example is also used to study the behaviour of the model. Cost minimization technique is used to get the expressions for total cost and other parameters

    Two-warehouse Inventory Model with Multivariate Demand and K-release Rule

    Get PDF
    AbstractIn this paper, we’ve projected a two-warehouse inventory model for deteriorating things beneath the impact of inflation and continuance of cash, wherever demand follows a rare combination of the linear time variable and on-hand inventory level. In one in the entire warehouse (OW), time-varying linear deterioration was thought-about and within the different (RW) weibull distributed deterioration was studied. Here, shortages were allowed and part backlogged. The stock is transferred from the RW to the OW following a bulk unharness rule. The target here is to seek out the optimum amount to that ought to be ordered and also the optimum variety of cycles during which the number from RW should be transferred to OW to maximize world wide web profit per unit time. The model has additionally been exemplified with the many numerical examples. The results have additionally been understood diagrammatically

    Optimal Inventory Policies for Weibull Deterioration under Trade Credit in Declining Market

    Get PDF
    The aim of this study is to develop mathematical model for Weibull deterioration of items in inventory in declining market when the supplier offers his retailers a credit period to settle the accounts against the dues. The computational steps are explored for a retailer to determine the optimal purchase units which minimize the total inventory cost per time unit. The numerical examples are given to demonstrate the retailer’s optimal decision. A sensitivity analysis is carried out to study the variations in the optimal solution.Weibull deterioration, trade credit, declining market

    Planning for shortages? Net present value analysis for a deteriorating item with partial backlogging

    No full text
    This paper develops inventory models to help answer strategic questions concerning whether planning for shortages offers financial benefits. A production-inventory system producing a deteriorating product in batches at a finite production rate with partial backordering is considered. Customers pay a deposit when placing a backorder. Backordered items receive a discount on the sales price. As lost sales may lead to customers not returning, the demand rate may depend on the fraction of lost sales. We develop a cash-flow based profit maximising Net Present Value (NPV) model without the inventory cost parameters commonly used in this context: unit holding cost, unit backorder cost, unit deterioration cost, and unit lost sales cost. The model finds the optimal inventory policy just like NPV models that discount the traditional parameters but has the advantage of not needing to estimate the value of the traditional parameters. It is shown that in models based on discounting the traditional parameters, the parameters are not exogenously determinable but are non-trivial functions of non-financial endogenous system parameters such as the production rate, annual demand rate, and backorder rate. Extensive numerical experiments illustrate how cash-flow NPV models provide insights into the value of planning for shortages and strategic choices about the design of the production-inventory system. It also provides insight into the classical problem of how to interpret unit backorder cost and unit lost sales cost. The study indicates that these insights cannot be reliably obtained from NPV models based on discounting unit backorder costs and unit lost sales costs.<br/
    • …
    corecore