1,007 research outputs found

    Immunity-Based Accommodation of Aircraft Subsystem Failures

    Get PDF
    This thesis presents the design, development, and flight-simulation testing of an artificial immune system (AIS) based approach for accommodation of different aircraft subsystem failures.;Failure accommodation is considered as part of a complex integrated AIS scheme that contains four major components: failure detection, identification, evaluation, and accommodation. The accommodation part consists of providing compensatory commands to the aircraft under specific abnormal conditions based on previous experience. In this research effort, the possibility of building an AIS allowing the extraction of pilot commands is investigated.;The proposed approach is based on structuring the self (nominal conditions) and the non-self (abnormal conditions) within the AIS paradigm, as sets of artificial memory cells (mimicking behavior of T-cells, B-cells, and antibodies) consisting of measurement strings, over pre-defined time windows. Each string is a set of features values at each sample time of the flight including pilot inputs, system states, and other variables. The accommodation algorithm relies on identifying the memory cell that is the most similar to the in-coming measurements. Once the best match is found, control commands corresponding to this match will be extracted from the memory and used for control purposes.;The proposed methodology is illustrated through simulation of simple maneuvers at nominal flight conditions, different actuators, and sensor failure conditions. Data for development and demonstration have been collected from West Virginia University 6-degrees-of-freedom motion-based flight simulator. The aircraft model used for this research represents a supersonic fighter which includes model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation.;The simulation results demonstrate the possibility of extracting pilot compensatory commands from the self/non-self structure and the capability of the AIS paradigm to address the problem of accommodating actuator and sensor malfunctions as a part of a comprehensive and integrated framework along with abnormal condition detection, identification, and evaluation

    A Versatile Simulation Environment of FTC Architectures for Large Transport Aircraft

    Get PDF
    We present a simulation environment with 3-D stereo visualization facilities destined for an easy setup and versatile assessment of fault detection and diagnosis based fault tolerant control systems. This environment has been primarily developed as a technology demonstrator of advanced reconfigurable flight control systems and is based on a realistic six degree of freedom flexible aircraft model. The aircraft control system architecture includes a flexible fault detection and diagnosis system and a reconfigurable nonlinear dynamic inversion based controller, able to handle different fault situations

    Pilot in loop assessment of fault tolerant flight control schemes in a motion flight simulator

    Get PDF
    This research presents the pilot in the loop tests carried out in a Six-Degree of Freedom (6-DOF) motion flight simulator to evaluate failure detection, isolation and identification (FDII) schemes for an advanced F-15 aircraft. The objective behind this study is to leverage the capability of the flight simulator at West Virginia University (WVU) to carry out a performance assessment of neurally augmented control algorithms developed on a Matlab/Simulink RTM platform. The experimental setup features an interface setup of Gen-2 SimulinkRTM schemes with MOTUS Flight Simulator (MFS). The set up is a close substitute to a real flight and thus is helpful in evaluation of the schemes in a realistic manner. The graphics in X-plane is used to obtain visual cues and the motion platform is used to obtain motion cues in the simulator cockpit. The whole set-up enables the pilot to respond with a joystick in the advent of a failure as he would otherwise in a real flight. The pilot response in maintaining the mission profile is different for different neural network augmentations and thus an indication of performance comparison of these schemes. Secondly, FDII schemes are developed for a sensor and actuator failure using an adaptive threshold for cross-correlation coefficients of the angular rates of the aircraft. Failure detection, isolation and identification logic is formulated based on monitoring the cross-correlation parameters with their Floating Limiter (FL) bounds. The FDII scheme developed shows a good performance with desktop simulation because of no pilot activity but with a pilot in the loop significant cross-correlation of the rates occur and hence the scheme become more susceptible to wrongs FDII. In addition, the pilot might induce some coupling of the cross-correlation parameters between detection and identification time which may trigger false detections and may configure the controller differently based on incorrect detection. Thus it is necessary that FDII scheme accommodate real flight conditions. The performance of the FDII schemes is improved with a pilot in the loop by monitoring the cross-correlation parameters and fine tuning FDII algorithms for real situations. This study has set up an excellent example to effectively utilize the aural, visual and motion cues to create a higher level of simulation complexity in designing control algorithms

    A Primer on Architectural Level Fault Tolerance

    Get PDF
    This paper introduces the fundamental concepts of fault tolerant computing. Key topics covered are voting, fault detection, clock synchronization, Byzantine Agreement, diagnosis, and reliability analysis. Low level mechanisms such as Hamming codes or low level communications protocols are not covered. The paper is tutorial in nature and does not cover any topic in detail. The focus is on rationale and approach rather than detailed exposition

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts

    Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    Get PDF
    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences

    Development and evaluation of a fault detection and identification scheme for the WVU YF-22 UAV using the artificial immune system approach

    Get PDF
    A failure detection and identification (FDI) scheme is developed for a small remotely controlled jet aircraft based on the Artificial Immune System (AIS) paradigm. Pilot-in-the-loop flight data are used to develop and test a scheme capable of identifying known and unknown aircraft actuator and sensor failures. Negative selection is used as the main mechanism for self/non-self definition; however, an alternative approach using positive selection to enhance performance is also presented. Tested failures include aileron and stabilator locked at trim and angular rate sensor bias. Hyper-spheres are chosen to represent detectors. Different definitions of distance for the matching rules are applied and their effect on the behavior of hyper-bodies is discussed. All the steps involved in the creation of the scheme are presented including design selections embedded in the different algorithms applied to generate the detectors set. The evaluation of the scheme is performed in terms of detection rate, false alarms, and detection time for normal conditions and upset conditions. The proposed detection scheme achieves good detection performance for all flight conditions considered. This approach proves promising potential to cope with the multidimensional characteristics of integrated/comprehensive detection for aircraft sub-system failures.;A preliminary performance comparison between an AIS based FDI scheme and a Neural Network and Floating Threshold based one is presented including groundwork on assessing possible improvements on pilot situational awareness aided by FDI schemes. Initial results favor the AIS approach to FDI due to its rather undemanding adaptation capabilities to new environments. The presence of the FDI scheme suggests benefits for the interaction between the pilot and the upset conditions by improving the accuracy of the identification of each particular failure and decreasing the detection delays

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Highly redundant and fault tolerant actuator system: control, condition monitoring and experimental validation

    Get PDF
    This thesis is concerned with developing a control and condition monitoring system for a class of fault tolerant actuators with high levels of redundancy. The High Redundancy Actuator (HRA) is a concept inspired by biomimetics that aims to provide fault tolerance using relatively large numbers of actuation elements which are assembled in parallel and series configurations to form a single actuator. Each actuation element provides a small contribution to the overall force and displacement of the system. Since the capability of each actuation element is small, the effect of faults within the individual element of the overall system is also small. Hence, the HRA will gracefully degrade instead of going from fully functional to total failure in the presence of faults. Previous research on HRA using electromechanical technology has focused on a relatively low number of actuation elements (i.e. 4 elements), which were controlled with multiple loop control methods. The objective of this thesis is to expand upon this, by considering an HRA with a larger number of actuation elements (i.e. 12 elements). First, a mathematical model of a general n-by-m HRA is derived from first principles. This method can be used to represent any size of electromechanical HRA with actuation elements arranged in a matrix form. Then, a mathematical model of a 4-by-3 HRA is obtained from the general n-by-m model and verified experimentally using the HRA test rig. This actuator model is then used as a foundation for the controller design and condition monitoring development. For control design, two classical and control method-based controllers are compared with an H_infinity approach. The objective for the control design is to make the HRA track a position demand signal in both health and faulty conditions. For the classical PI controller design, the first approach uses twelve local controllers (1 per actuator) and the second uses only a single global controller. For the H_infinity control design, a mixed sensitivity functions is used to obtain good tracking performance and robustness to modelling uncertainties. Both of these methods demonstrate good tracking performance, with a slower response in the presence of faults. As expected, the H_infinity control method's robustness to modelling uncertainties, results in a smaller performance degradation in the presence of faults, compared with the classical designs. Unlike previous work, the thesis also makes a novel contribution to the condition monitoring of HRA. The proposed algorithm does not require the use of multiple sensors. The condition monitoring scheme is based on least-squares parameter estimation and fuzzy logic inference. The least-squares parameter estimation estimates the physical parameters of the electromechanical actuator based on input-output data collected from real-time experiments, while the fuzzy logic inference determines the health condition of the actuator based on the estimated physical parameters. Hence, overall, a new approach to both control and monitoring of an HRA is proposed and demonstrated on a twelve elements HRA test rig
    corecore