4 research outputs found

    Tree TDMA MAC Algorithm Using Time and Frequency Slot Allocations in Tree-Based WSNs

    Get PDF
    In this paper, we propose a tree-based time division multiple access (Tree TDMA) media access control (MAC) algorithm based on the IEEE 802.15.4 PHY standard. The method involves the simultaneous use of two algorithms, a time slot allocation algorithm (TSAA) and a frequency slot allocation algorithm (FSAA), at low power consumption to support voice and data communication to solve the problems afflicting prevalent MAC protocols in tree topology networks. The TSAA first generates routing paths through the control channel in a super frame prior to transmitting packets, and allocates time slots for each node to transmit packets. The FSAA then allocates frequencies to each path according to the routing paths generated following its application. The overhearing problem and the funneling effect in TDMA as well as carrier sense multiple access with collision avoidance (CSMA/CA) MACs are resolved by these two algorithms because a given node and its neighbors are orthogonal in terms of time and frequency. The problem of inter-node synchronization is addressed by periodically sending a beacon from higher to lower nodes, and the issue of low power is solved by leaving unsigned time slots in an idle state. To test the effectiveness of the proposed algorithm, we used a MATLAB simulation to compare its performance with that of contention-based CSMA MAC and non-contention-based TreeMAC in terms of network throughput, network delay, energy efficiency, and energy consumption. We also tested the performance of the algorithms for increasing number of nodes and transmission packets in the tree topology network.This work was supported by the ICT R&D Program of MSIP/IITP. [B0126-16-1018, The IoT Platform for Virtual Things, Distributed Autonomous Intellgence and Data Federation/Analysis

    A design of the full-duplex voice mixer for multi-user voice over sensor networks (VoSN) systems

    No full text
    corecore