8,648 research outputs found

    A three channel telemetry system

    Get PDF
    A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring

    A 300-800MHz Tunable Filter and Linearized LNA applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver

    Get PDF
    A multiband flexible RF-sampling receiver aimed at software-defined radio is presented. The wideband RF sampling function is enabled by a recently proposed discrete-time mixing downconverter. This work exploits a voltage-sensing LNA preceded by a tunable LC pre-filter with one external coil to demonstrate an RF-sampling receiver with low noise figure (NF) and high harmonic rejection (HR). The second-order LC filter provides voltage pre-gain and attenuates the source noise aliasing, and it also improves the HR ratio of the sampling downconverter. The LNA consists of a simple amplifier topology built from inverters and resistors to improve the third-order nonlinearity via an enhanced voltage mirror technique. The RF-sampling receiver employs 8 times oversampling covering 300 to 800 MHz in two RF sub-bands. The chip is realized in 65 nm CMOS and the measured gain across the band is between 22 and 28 dB, while achieving a NF between 0.8 to 4.3 dB. The IIP2 varies between +38 and +49 dBm and the IIP3 between -14 dBm and -9 dBm, and the third and fifth order HR ratios are more than 60 dB. The LNA and downconverter consumes 6 mW, and the clock generator takes 12 mW at 800 MHz RF.\ud \u

    Design and development of a novel Invasive Blood Pressure simulator for patient's monitor testing

    Get PDF
    This paper presents a newly-designed and realized Invasive Blood Pressure (IBP) device for the simulation on patient’s monitors. This device shows improvements and presents extended features with respect to a first prototype presented by the authors and similar systems available in the state-of-the-art. A peculiarity of the presented device is that all implemented features can be customized from the developer and from the point of view of the end user. The realized device has been tested, and its performances in terms of accuracy and of the back-loop measurement of the output for the blood pressure regulation utilization have been described. In particular, an accuracy of ±1 mmHg at 25 °C, on a range from −30 to 300 mmHg, was evaluated under different test conditions. The designed device is an ideal tool for testing IBP modules, for zero setting, and for calibrations. The implemented extended features, like the generation of custom waveforms and the Universal Serial Bus (USB) connectivity, allow use of this device in a wide range of applications, from research to equipment maintenance in clinical environments to educational purposes. Moreover, the presented device represents an innovation, both in terms of technology and methodologies: It allows quick and efficient tests to verify the proper functioning of IBP module of patients’ monitors. With this innovative device, tests can be performed directly in the field and faster procedures can be implemented by the clinical maintenance personnel. This device is an open source project and all materials, hardware, and software are fully available for interested developers or researchers.Web of Science201art. no. 25

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve
    corecore