344 research outputs found

    Saliency Ratio and Power Factor of IPM Motors Optimally Designed for High Efficiency and Low Cost Objectives

    Get PDF
    This paper uses formal mathematical optimization techniques based on parametric finite-element-based computationally efficient models and differential evolution algorithms. For constant-power applications, in the novel approach described, three concurrent objective functions are minimized: material cost, losses, in order to ensure high efficiency, and the difference between the rated and the characteristic current, aiming to achieve very high constant-power flux-weakening range. Only the first two objectives are considered for constant-torque applications. Two types of interior permanent magnet rotors in a single- and double-layer V-shaped configuration are considered, respectively. The stator has the typical two slots per pole and phase distributed winding configuration. The results for the constant-torque design show that, in line with expectations, high efficiency and high power factor machines are more costly, and that the low-cost machines have poorer efficiency and power factor and most importantly, and despite a common misconception, the saliency ratio may also be lower in this case. For constant-power designs, the saliency ratio can be beneficial. Nevertheless, despite a common misconception, when cost is considered alongside performance as an objective, a higher saliency ratio does not necessarily improve the power factors of motors suitable for ideal infinite flux weakening

    Performance comparison between Surface Mounted and Interior PM motor drives for Electric Vehicle application

    Get PDF
    Electric Vehicles make use of permanent magnet synchronous traction motors for their high torque density and efficiency. A comparison between interior permanent magnet (IPM) and surface mounted permanent magnet (SPM) motors is carried out, in terms of performance at given inverter ratings. The results of the analysis, based on a simplified analytical model and confirmed by FE analysis, show that the two motors have similar rated power but that the SPM motor has barely no overload capability, independently of the available inverter current. Moreover the loss behavior of the two motors is rather different in the various operating ranges with the SPM one better at low speed due to short end connections but penalized at high speed by the need of a significant de-excitation current. The analysis is validated through finite-element simulation of two actual motor design

    Six-Phase Fractional-Slot-per-Pole-per-Phase Permanent-Magnet Machines With Low Space Harmonics for Electric Vehicle Application

    Get PDF
    This paper discusses the development of new winding configuration for six-phase permanent-magnet (PM) machines with 18 slots and 8 poles, which eliminates and/or reduces undesirable space harmonics in the stator magnetomotive force. The proposed configuration improves power/torque density and efficiency with a reduction in eddy-current losses in the rotor permanent magnets and copper losses in end windings. To improve drive train availability for applications in electric vehicles (EVs), this paper proposes the design of a six-phase PM machine as two independent three-phase windings. A number of possible phase shifts between two sets of three-phase windings due to their slot-pole combination and winding configuration are investigated, and the optimum phase shift is selected by analyzing the harmonic distributions and their effect on machine performance, including the rotor eddy-current losses. The machine design is optimized for a given set of specifications for EVs, under electrical, thermal and volumetric constraints, and demonstrated by the experimental measurements on a prototype machine

    3-D Numerical Hybrid Method for PM Eddy-Current Losses Calculation: Application to Axial-Flux PMSMs

    No full text
    International audienceThis paper describes a 3-D numerical hybrid method (NHM) of the permanent-magnet (PM) eddy-current losses in axial-flux PM synchronous machines (PMSMs). The PM magnetic flux density is determined using the multi-static 3-D finite-element method (FEM) at resistance-limited (i.e., without eddy-current reaction field). Based on the predicted flux density distribution, the eddy-currents induced in the PMs and the 3-D PM eddy-current losses are calculated by 3-D finite-difference method (FDM) considering a large mesh. Therefore, this 3-D NHM is based on a coupling between the multi-static 3-D FEM and the 3-D FDM. Two 24-slots/16-poles (i.e., fractional-slot number) axial-flux PMSMs having a non-overlapping winding (all teeth wound type) with stator double-sided structure are studied: 1) surface-PM (SPM) and 2) interior-PM (IPM) To evaluate the reliability of the proposed technique, the 3-D PM eddy-current losses are determined and compared with transient 3-D FEM (i.e., magneto-dynamical 3-D FEM). The same nonlinear properties of the laminations have been applied for multi-static/transient 3-D FEM. The computation time can be divided by 25 with a difference less than 12%

    INVESTIGATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES FOR DIRECT-DRIVE AND INTEGRATED CHARGING APPLICATIONS IN ELECTRIC VEHICLES

    Get PDF
    Electrified vehicles have proven to be potential candidates in the future for disrupting the automotive industry which is dominated by conventional gasoline vehicles. Electric vehicle (EV) technology has evolved rapidly over the last decade with new designs of EV drivetrain systems and components but no specific design has been able to serve as a solution that is affordable, reliable and performance-wise similar to existing gasoline vehicle equivalent. Extended driving range and overall cost of the vehicle still remain major bottlenecks. Understanding the state-of-the-art technologies and challenges in existing electric vehicle powertrain and charging systems, with major focus on permanent magnet synchronous machines & drives, this dissertation presents the following

    On the Modeling, Analysis and Development of PMSM: For Traction and Charging Application

    Get PDF
    Permanent magnet synchronous machines (PMSMs) are widely implemented commercially available traction motors owing to their high torque production capability and wide operating speed range. However, to achieve significant electric vehicle (EV) global market infiltration in the coming years, the technological gaps in the technical targets of the traction motor must be addressed towards further improvement of driving range per charge of the vehicle and reduced motor weight and cost. Thus, this thesis focuses on the design and development of a novel high speed traction PMSM with improved torque density, maximized efficiency, reduced torque ripple and increased driving range suitable for both traction and integrated charging applications. First, the required performance targets are determined using a drive cycle based vehicle dynamic model, existing literature and roadmaps for future EVs. An unconventional fractional–slot distributed winding configuration with a coil pitch of 2 is selected for analysis due to their short end–winding length, reduced winding losses and improved torque density. For the chosen baseline topology, a non–dominated sorting genetic algorithm based selection of optimal odd slot numbers is performed for higher torque production and reduced torque ripple. Further, for the selected odd slot–pole combination, a novel star–delta winding configuration is modeled and analyzed using winding function theory for higher torque density, reduced spatial harmonics, reduced torque ripple and machine losses. Thereafter, to analyze the motor performance with control and making critical decisions on inter–dependent design parameter variations for machine optimization, a parametric design approach using a novel coupled magnetic equivalent circuit model and thermal model incorporating current harmonics for fractional–slot wound PMSMs was developed and verified. The developed magnetic circuit model incorporates all machine non–linearities including effects of temperature and induced inverter harmonics as well as the space harmonics in the winding inductances of a fractional–slot winding configuration. Using the proposed model with a pareto ant colony optimization algorithm, an optimal rotor design is obtained to reduce the magnet utilization and obtain maximized torque density and extended operating range. Further, the developed machine structure is also analyzed and verified for integrated charging operation where the machine’s winding inductances are used as line inductors for charging the battery thereby eliminating the requirement of an on–board charger in the powertrain and hence resulting in reduced weight, cost and extended driving range. Finally, a scaled–down prototype of the proposed PMSM is developed and validated with experimental results in terms of machine inductances, torque ripple, torque–power–speed curves and efficiency maps over the operating speed range. Subsequently, understanding the capabilities and challenges of the developed scaled–down prototype, a full–scale design with commercial traction level ratings, will be developed and analyzed using finite element analysis. Further recommendations for design improvement, future work and analysis will also be summarized towards the end of the dissertation

    Electrical Machine Topologies: Hottest Topics in the Electrical Machine Research Community

    Get PDF
    In this article, the state of the art in electrical machine design is outlined underlining the problems and challenges to be solved by engineers. As highlighted in this article, even if electrical machine design is often considered a mature issue from the technical and technological point of view, every year, new progresses and steps forward are made. New and more sophisticated design tools can be used worldwide, and innovative manufacturing processes, new insulation materials, and higher performance magnetic materials are available on the market. In addition, the evolution of the hardware used in digital control and new powerful power electronic devices represents a constant stimulus to improve the performance of electrical machines and reintroduce electrical machine structures that were not adopted in the past due to technological and technical constraints. As shown in this article, electrical machine design is an evergreen topic, and its importance is rising more each year under the push of more energy-saving requirements and higher-efficiency systems for electromechanical conversion. A green world will not be possible without electrical machines

    A Nine-Phase 18-Slot 14-Pole Interior Permanent Magnet Machine with Low Space Harmonics for Electric Vehicle Applications

    Get PDF
    © 1986-2012 IEEE.One of the key challenges of utilizing concentrated winding in interior permanent magnet machines (IPMs) is the high rotor eddy current losses in both magnets and rotor iron due to the presence of a large number of lower and higher order space harmonics in the stator magnetomotive force (MMF). These MMF harmonics also result in other undesirable effects, such as localized core saturation, acoustic noise, and vibrations. This paper proposes a nine-phase 18-slot 14-pole IPM machine using the multiple three-phase winding sets to reduce MMF harmonics. All the subharmonics and some of the higher order harmonics are cancelled out, while the advantages of the concentrate windings are retained. The proposed machine exhibits a high efficiency over wide torque and speed ranges. A 10-kW machine prototype is built and tested in generator mode for the experimental validation. The experimental results indicate the effectiveness of the MMF harmonics cancellation in the proposed machine

    Study of innovative electric machines for high efficiency vehicular traction applications

    Get PDF
    This thesis collects some of the work accomplished during the PhD research activity focused on the study of special electric machines for vehicle traction applications. The work is divided into due parts. The rst part is mainly technological and covers some studies and experimental activities concerning new technical solutions to solve some common issues in operation of electric motors for automotive use, namely ux weakening and cogging torque. The second part has a more theoretical nature and focuses on some methods for electric machine modeling and analysis which has been developed to facilitate the study and design optimizations carried out during the PhD research work. The chapters in the rst part address the following topics: 1. Development and testing of an interior-permanent-magnet motor prototype fully conceived, designed and manufactured at the University of Trieste to implement a new concept of flux weakening system at high speeds. The concept has been also protected through a pending patent. 2. Multi-objective design optimization of an interior permanent magnet reluctance-assisted synchronous motor for the automotive industry. The design optimization was meant to support an industrial development project which is still in progress so no prototype has been built yet. 3. Study of a new optimized magnetic wedge design capable of reducing cogging torque in automotive propulsion motors having open stator slots. The second part proposes some analytical and numerical results that have been worked out to approach the modeling and optimization of various kinds of permanent magnet synchronous motors. The main problem to which these chapters try to answer is to nd suciently fast but accurate methods for permanent magnet analysis without time-consuming finite-element transient analysis. The proposed methods have been successfully integrated into design optimization programs used in the industrial environment in the development of innovative electric machines not only for the automotive industry

    Slot/pole Combinations Choice for Concentrated Multiphase Machines dedicated to Mild-Hybrid Applications

    Get PDF
    Version de l'Ă©diteur Ă  l'adresse suivante : http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6119910&isnumber=6119266This paper presents multiphase permanent magnet machines with concentrated non-overlapped winding as a good candidate for automotive low voltage mild-hybrid applications. These machines often require a trade-off between low speed performances such as high torque density and high speed performances like flux weakening capabilities. This paper describes how to choose a key design parameter to ease this compromise, the slots/poles combination, according to three parameters: winding factor including harmonics factor, rotor losses amount thanks to a comparison factor and radial forces balancing. The comparison criterion are based on both analytical formula and Finite Element Analysis.Projet MHYGALE/ ADEM
    • 

    corecore