319 research outputs found

    Design of a Cost-Efficient Reconfigurable Pipeline ADC

    Get PDF
    Power budget is very critical in the design of battery-powered implantable biomedical instruments. High speed, high resolution and low power usually cannot be achieved at the same time. Therefore, a tradeoff must be made to compromise every aspect of those features. As the main component of the bioinstrument, high conversion rate, high resolution ADC consumes most of the power. Fortunately, based on the operation modes of the bioinstrument, a reconfigurable ADC can be used to solve this problem. The reconfigurable ADC will operate at 10-bit 40 MSPS for the diagnosis mode and at 8-bit 2.5 MSPS for the monitor mode. The ADC will be completely turned off if no active signal comes from sensors or if an off command is received from the antenna. By turning off the sample hold stage and the first two stages of the pipeline ADC, a significant power saving is achieved. However, the reconfigurable ADC suffers from two drawbacks. First, the leakage signals through the extra off-state switches in the third stage degrade the performance of the data converter. This situation tends to be even worse for high speed and high-resolution applications. An interference elimination technique has been proposed in this work to solve this problem. Simulation results show a significant attenuation of the spurious tones. Moreover, the transistors in the OTA tend to operate in weak inversion region due to the scaling of the bias current. The transistor in subthreshold is very slow due to the small transit frequency. In order to get a better tradeoff between the transconductance efficiency and the transit frequency, reconfigurable OTAs and scalable bias technique are devised to adjust the operating point from weak inversion to moderate inversion. The figure of merit of the reconfigurable ADC is comparable to the previously published conventional pipeline ADCs. For the 10-bit, 40 MSPS mode, the ADC attains a 56.9 dB SNDR for 35.4 mW power consumption. For the 8-bit 2.5 MSPS mode, the ADC attains a 49.2 dB SNDR for 7.9 mW power consumption. The area for the core layout is 1.9 mm2 for a 0.35 micrometer process

    A design tool for high-resolution high-frequency cascade continuous- time Σ∆ modulators

    Get PDF
    Event: Microtechnologies for the New Millennium, 2007, Maspalomas, Gran Canaria, SpainThis paper introduces a CAD methodology to assist the de signer in the implementation of continuous-time (CT) cas- cade Σ∆ modulators. The salient features of this methodology ar e: (a) flexible behavioral modeling for optimum accuracy- efficiency trade-offs at different stages of the top-down synthesis process; (b) direct synthesis in the continuous-time domain for minimum circuit complexity and sensitivity; a nd (c) mixed knowledge-based and optimization-based architec- tural exploration and specification transmission for enhanced circuit performance. The applicability of this methodology will be illustrated via the design of a 12 bit 20 MHz CT Σ∆ modulator in a 1.2V 130nm CMOS technology.Ministerio de Ciencia y Educación TEC2004-01752/MICMinisterio de Industria, Turismo y Comercio FIT-330100-2006-134 SPIRIT Projec

    Efficient Design and Synthesis of Decimation Filters for Wideband Delta-Sigma ADCs

    Get PDF
    A design methodology for synthesizing power-optimized decimation filters for wideband Delta Sigma (ΔΣ) analog-to-digital converters (ADCs) for next-generation wireless standards is presented. The decimation filter is designed to filter the out-of-band quantization noise from a fifth-order continuous-time ΔΣ modulator, with 20 MHz signal bandwidth and 14-bits resolution. The modulator employs an oversampling ratio (OSR) of 16 with a clock rate of 640 MHz. Retiming, pipelining, Canonical Signed Digits (CSD) encoding has been utilized along with an optimized halfband filter to realize the power savings in the overall decimation filter. A process flow to rapidly design the optimized filters in MATLAB, generate the hardware description language (HDL) code and then automatically synthesize the design using standard cells has been presented. The decimation filter is implemented using standard cells in a 45 nm CMOS technology occupies a layout area of 0.12 mm2 and consumes 8 mW power from the 1.1 V supply

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    Design of Digital Frequency Synthesizer for 5G SDR Systems

    Get PDF
    The previous frequency synthesizer techniques for scalable SDR are not compatible with high end applications due to its complex computations and the intolerance over increased path interference rate which leads to an unsatisfied performance with improved user rate in real time environment. Designing an efficient frequency synthesizer framework in the SDR system is essential for 5G wireless communication systems with improved Quality of service (QoS). Consequently, this research has been performed based on the merits of fully digitalized frequency synthesizer and its explosion in wide range of frequency band generations. In this paper hardware optimized reconfigurable digital base band processing and frequency synthesizer model is proposed without making any design complexity trade-off to deal with the multiple standards. Here fully digitalized frequency synthesizer is introduced using simplified delay units to reduce the design complexity. Experimental results and comparative analyzes are carried out to validate the performance metrics and exhaustive test bench simulation is also carried out to verify the functionality
    corecore