5,567 research outputs found

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Affect Recognition in Autism: a single case study on integrating a humanoid robot in a standard therapy.

    Get PDF
    Autism Spectrum Disorder (ASD) is a multifaceted developmental disorder that comprises a mixture of social impairments, with deficits in many areas including the theory of mind, imitation, and communication. Moreover, people with autism have difficulty in recognising and understanding emotional expressions. We are currently working on integrating a humanoid robot within the standard clinical treatment offered to children with ASD to support the therapists. In this article, using the A-B-A' single case design, we propose a robot-assisted affect recognition training and to present the results on the child’s progress during the five months of clinical experimentation. In the investigation, we tested the generalization of learning and the long-term maintenance of new skills via the NEPSY-II affection recognition sub-test. The results of this single case study suggest the feasibility and effectiveness of using a humanoid robot to assist with emotion recognition training in children with ASD

    Cultural dialects of real and synthetic emotional facial expressions

    Get PDF
    In this article we discuss the aspects of designing facial expressions for virtual humans (VHs) with a specific culture. First we explore the notion of cultures and its relevance for applications with a VH. Then we give a general scheme of designing emotional facial expressions, and identify the stages where a human is involved, either as a real person with some specific role, or as a VH displaying facial expressions. We discuss how the display and the emotional meaning of facial expressions may be measured in objective ways, and how the culture of displayers and the judges may influence the process of analyzing human facial expressions and evaluating synthesized ones. We review psychological experiments on cross-cultural perception of emotional facial expressions. By identifying the culturally critical issues of data collection and interpretation with both real and VHs, we aim at providing a methodological reference and inspiration for further research

    The power of affective touch within social robotics

    Get PDF
    There have been many leaps and bounds within social robotics, especially within human-robot interaction and how to make it a more meaningful relationship. This is traditionally accomplished through communicating via vision and sound. It has been shown that humans naturally seek interaction through touch yet the implications on emotions is unknown both in human-human interaction and social human-robot interaction. This thesis unpacks the social robotics community and the research undertaken to show a significant gap in the use of touch as a form of communication. The meaning behind touch will be investigated and what implication it has on emotions. A simplistic prototype was developed focusing on texture and breathing. This was used to carry out experiments to find out which combination of texture and movement felt natural. This proved to be a combination of synthetic fur and 14 breaths per minute. For human’s touch is said to be the most natural way of communicating emotions, this is the first step in achieving successful human-robot interaction in a more natural human-like way

    Teaching robot’s proactive behavior using human assistance

    Get PDF
    The final publication is available at link.springer.comIn recent years, there has been a growing interest in enabling autonomous social robots to interact with people. However, many questions remain unresolved regarding the social capabilities robots should have in order to perform this interaction in an ever more natural manner. In this paper, we tackle this problem through a comprehensive study of various topics involved in the interaction between a mobile robot and untrained human volunteers for a variety of tasks. In particular, this work presents a framework that enables the robot to proactively approach people and establish friendly interaction. To this end, we provided the robot with several perception and action skills, such as that of detecting people, planning an approach and communicating the intention to initiate a conversation while expressing an emotional status.We also introduce an interactive learning system that uses the person’s volunteered assistance to incrementally improve the robot’s perception skills. As a proof of concept, we focus on the particular task of online face learning and recognition. We conducted real-life experiments with our Tibi robot to validate the framework during the interaction process. Within this study, several surveys and user studies have been realized to reveal the social acceptability of the robot within the context of different tasks.Peer ReviewedPostprint (author's final draft

    Design of a Huggable Social Robot with Affective Expressions Using Projected Images

    Get PDF
    We introduce Pepita, a caricatured huggable robot capable of sensing and conveying affective expressions by means of tangible gesture recognition and projected avatars. This study covers the design criteria, implementation and performance evaluation of the different characteristics of the form and function of this robot. The evaluation involves: (1) the exploratory study of the different features of the device, (2) design and performance evaluation of sensors for affective interaction employing touch, and (3) design and implementation of affective feedback using projected avatars. Results showed that the hug detection worked well for the intended application and the affective expressions made with projected avatars were appropriated for this robot. The questionnaires analyzing users’ perception provide us with insights to guide the future designs of similar interfaces

    Saying It with Light: A Pilot Study of Affective Communication Using the MIRO Robot

    Get PDF
    Recently, the concept of a ‘companion robot’ as a healthcare tool has been popularised, and even commercialised. We present MIRO, a robot that is biomimetic in aesthetics, morphology, behaviour, and control architecture. In this paper, we review how these design choices affect its suitability for a companionship role. In particular, we consider how emulation of the familiar body language and other emotional expressions of mammals may facilitate effective communication with na¨ıve users through the reliable evocation of intended perceptions of emotional state and intent. We go on to present a brief pilot study addressing the question of whether shared cultural signals can be relied upon, similarly, as components of communication systems for companion robots. Such studies form part of our ongoing effort to understand and quantify human responses to robot expressive behaviour and, thereby, develop a methodology for optimising the design of social robots by accounting for individual and cultural differences
    corecore