72,371 research outputs found

    Reconfigurable Power Combiner and Miniature Filter

    Get PDF
    Microwave communication systems have undergone tremendous changes in the past two decades. There is an ever-growing demand for devices with higher performance, lower cost and smaller size. Hence, more focus is given to improving the operational efficiency of individual devices. Microwave filters and power combiners are essential parts of such communication systems. This thesis presents a novel reconfigurable power combiner and a unique design for a miniature filter design, which can operate either as an ultra wide band (UWB) filter or a dual-band filter. A Gysel power combiner (GPC) is used to combine input signals from two high power amplifiers. However, the performance of conventional GPC degrades in the case of an imbalance between inputs. With the failure of one of the power amplifiers, only half the power of the other amplifier is delivered to the output port. The other half is dissipated in the load resistors. To circumvent this issue a reconfigurable Gysel combiner is proposed. The reconfigurable Gysel combiner operates efficiently in the normal operational mode. In the case of a failure of one of the amplifiers, it delivers the full power of the other amplifier to the output port. The new design for the reconfigurable Gysel combiner incorporates six SPST switches and a stub matching network. A filter is a two-port device used for frequency selectivity in microwave communication. Among which the UWB filters have a wide pass-band (>20%) and support high data rates, while the dual-band filters are used in multi-band communications. This thesis introduces a unique method to design miniature UWB and dual-band filters. A capacitively coupled distributed microstrip filter with N resonators is integrated with lumped capacitors to effectively produce 2N+1 resonators. This filter can be transformed into a UWB or a Dual-band filter depending on the value of the lumped capacitor. Prototype units for the reconfigurable Gysel combiners, UWB filter and dual-band filter have been developed, fabricated and tested

    Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters

    Get PDF
    A new method of designing linear-phase FIR filters is proposed by minimizing a quadratic measure of the error in the passband and stopband. The method is based on the computation of an eigenvector of an appropriate real, symmetric, and positive-definite matrix. The proposed design procedure is general enough to incorporate both time- and frequency-domain constraints. For example, Nyquist filters can be easily designed using this approach. The design time for the new method is comparable to that of Remez exchange techniques. The passband and stopband errors in the frequency domain can be made equiripple by an iterative process, which involves feeding back the approximation error at each iteration. Several numerical design examples and comparisons to existing methods are presented, which demonstrate the usefulness of the present approach

    Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks

    Get PDF
    A lattice structure and an algorithm are presented for the design of two-channel QMF (quadrature mirror filter) banks, satisfying a sufficient condition for perfect reconstruction. The structure inherently has the perfect-reconstruction property, while the algorithm ensures a good stopband attenuation for each of the analysis filters. Implementations of such lattice structures are robust in the sense that the perfect-reconstruction property is preserved in spite of coefficient quantization. The lattice structure has the hierarchical property that a higher order perfect-reconstruction QMF bank can be obtained from a lower order perfect-reconstruction QMF bank, simply by adding more lattice sections. Several numerical examples are provided in the form of design tables

    Efficient reconstruction of band-limited sequences from nonuniformly decimated versions by use of polyphase filter banks

    Get PDF
    An efficient polyphase structure for the reconstruction of a band-limited sequence from a nonuniformly decimated version is developed. Theoretically, the reconstruction involves the implementation of a bank of multilevel filters, and it is shown that how all these reconstruction filters can be obtained at the cost of one Mth band low-pass filter and a constant matrix multiplier. The resulting structure is therefore more general than previous schemes. In addition, the method offers a direct means of controlling the overall reconstruction distortion T(z) by appropriate design of a low-pass prototype filter P(z). Extension of these results to multiband band-limited signals and to the case of nonconsecutive nonuniform subsampling are also summarized, along with generalizations to the multidimensional case. Design examples are included to demonstrate the theory, and the complexity of the new method is seen to be much lower than earlier ones

    Plasmonic Band-Pass Microfilters for LWIR Absorption Spectroscopy

    Get PDF
    Absorption spectroscopy in the long wave infrared provides an effective method for identification of various hazardous chemicals. We present a theoretical design for plasmonic band-pass filters that can be used to provide wavelength selectivity for uncooled microbolometer sensors. The microfilters consist of a pair of input reflection gratings that couple light into a plasmonic waveguide with a central resonant waveguide cavity. An output transmission grating on the other side of the structure pulls light out of the waveguide where it is detected by a closely spaced sensor. Fabrication of the filters can be performed using standard photolithography procedures. A spectral bandpass with a full-width at half-maximum (FWHM) of 100 nm can be obtained with a center wavelength spanning the entire 8–12 μm atmospheric transmission window by simple geometric scaling of only the lateral dimensions. This allows the simultaneous fabrication of all the wavelength filters needed for a full spectrometer on a chip

    A New Low Complexity Uniform Filter Bank Based on the Improved Coefficient Decimation Method

    Get PDF
    In this paper, we propose a new uniform filter bank (FB) based on the improved coefficient decimation method (ICDM). In the proposed FB’s design, the ICDM is used to obtain different multi-band frequency responses using a single lowpass prototype filter. The desired subbands are individually obtained from these multi-band frequency responses by using low order frequency response masking filters and their corresponding ICDM output frequency responses. We show that the proposed FB is a very low complexity alternative to the other FBs in literature, especially the widely used discrete Fourier transform based FB (DFTFB) and the CDM based FB (CDFB). The proposed FB can have a higher number of subbands with twice the center frequency resolution when compared with the CDFB and DFTFB. Design example and implementation results show that our FB achieves 86.59% and 58.84% reductions in resource utilizations and 76.95% and 47.09% reductions in power consumptions when compared with the DFTFB and CDFB respectively

    Implementation of accurate broadband steering vectors for broadband angle of arrival estimation

    Get PDF
    Motivated by accurate broadband steering vector requirements for applications such as broadband angle of arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We demonstrate the appeal of this approach in simulations
    corecore