115 research outputs found

    A generic methodology to compute design sensitivity to SEU in SRAM-Based FPGA

    Get PDF

    A Methodology to Design Pipelined Simulated Annealing Kernel Accelerators on Space-Borne Field-Programmable Gate Arrays

    Get PDF
    Increased levels of science objectives expected from spacecraft systems necessitate the ability to carry out fast on-board autonomous mission planning and scheduling. Heterogeneous radiation-hardened Field Programmable Gate Arrays (FPGAs) with embedded multiplier and memory modules are well suited to support the acceleration of scheduling algorithms. A methodology to design circuits specifically to accelerate Simulated Annealing Kernels (SAKs) in event scheduling algorithms is shown. The main contribution of this thesis is the low complexity scoring calculation used for the heuristic mapping algorithm used to balance resource allocation across a coarse-grained pipelined data-path. The methodology was exercised over various kernels with different cost functions and problem sizes. These test cases were benchedmarked for execution time, resource usage, power, and energy on a Xilinx Virtex 4 LX QR 200 FPGA and a BAE RAD 750 microprocessor

    Investigating the Optical Link Performance of the End-of Substructure Card and Susceptibility to SEUs

    Get PDF
    Particle physics experiments carried out by CERN attempt to investigate the fundamental forces of matter. One of these experiments is the ATLAS experiment, which studies the proton-proton collisions in the LHC. A series of upgrades are planned to increase the luminosity by a factor of five, leading to the high-luminosity LHC (HL-LHC). This upgrade will increase the potential for new discoveries but brings with it design challenges in relation to the harsh radiation environment and significant data throughput required. The ATLAS experiment is building a new detector to cope with these challenges, titled the Inner Tracker (ITk). A crucial part of this new detector is the End-of-Substructure (EoS) card, which constitutes the interface between the ondetector electronics and the off-detector systems. In addition to the operational challenges, the HL-LHC does not allow for repairs or replacing of EoS cards once operation commences, emphasizing the need for thorough testing and qualification of this component. This thesis focuses on characterizing the performance of the EoS card in the presence of radiation, under non-ideal operating conditions and the impact of optical link parameters. The first set of tests is centered on qualifying the radiation tolerance of the EoS card. The radiation environment within the ITk poses a threat to the stable operation of electronics as energetic particles have the potential to cause erroneous changes in device logic, known as Single Event Upsets (SEU). The SEU susceptibility of the EoS card, with a focus on the Versatile Link Plus Transceiver (VTRx+) component, is studied by irradiating the EoS card with a neutron source with a distributed energy spectrum and a peak energy of 11MeV while performing a bit error rate (BER) test to monitor for radiation induced errors. The second set of tests deals with characterizing the impact of an irregular power supply on the EoS card's performance through simulating noise on the supply lines and monitoring the response in BER. The final set of tests investigates the impact the VTRx+ configuration parameters have on the quality of the optical signal. These tests were carried out at the University of Cape Town (UCT) with the support of DESY, a national research institute in Germany, responsible for the production of the EoS cards. A number of new firmware, software and hardware modules were developed as part of this work in order to carry out the tests required. The most significant of which comprised a novel firmware addition allowing for the evaluation of the optical signal quality with an FPGA. This contribution is now being integrated into the quality control proceedings at DESY, to be used in assessing optical signal quality of the entire set of approximately 1552 EoS cards being produced

    Study of Radiation Effects on 28nm UTBB FDSOI Technology

    Get PDF
    With the evolution of modern Complementary Metal-Oxide-Semiconductor (CMOS) technology, transistor feature size has been scaled down to nanometers. The scaling has resulted in tremendous advantages to the integrated circuits (ICs), such as higher speed, smaller circuit size, and lower operating voltage. However, it also creates some reliability concerns. In particular, small device dimensions and low operating voltages have caused nanoscale ICs to become highly sensitive to operational disturbances, such as signal coupling, supply and substrate noise, and single event effects (SEEs) caused by ionizing particles, like cosmic neutrons and alpha particles. SEEs found in ICs can introduce transient pulses in circuit nodes or data upsets in storage cells. In well-designed ICs, SEEs appear to be the most troublesome in a space environment or at high altitudes in terrestrial environment. Techniques from the manufacturing process level up to the system design level have been developed to mitigate radiation effects. Among them, silicon-on-insulator (SOI) technologies have proven to be an effective approach to reduce single-event effects in ICs. So far, 28nm ultra-thin body and buried oxide (UTBB) Fully Depleted SOI (FDSOI) by STMicroelectronics is one of the most advanced SOI technologies in commercial applications. Its resilience to radiation effects has not been fully explored and it is of prevalent interest in the radiation effects community. Therefore, two test chips, namely ST1 and AR0, were designed and tested to study SEEs in logic circuits fabricated with this technology. The ST1 test chip was designed to evaluate SET pulse widths in logic gates. Three kinds of the on-chip pulse-width measurement detectors, namely the Vernier detector, the Pulse Capture detector and the Pulse Filter detector, were implemented in the ST1 chip. Moreover, a Circuit for Radiation Effects Self-Test (CREST) chain with combinational logic was designed to study both SET and SEU effects. The ST1 chip was tested using a heavy ion irradiation beam source in Radiation Effects Facility (RADEF), Finland. The experiment results showed that the cross-section of the 28nm UTBB-FDSOI technology is two orders lower than its bulk competitors. Laser tests were also applied to this chip to research the pulse distortion effects and the relationship between SET, SEU and the clock frequency. Total Ionizing Dose experiments were carried out at the University of Saskatchewan and European Space Agency with Co-60 gammacell radiation sources. The test results showed the devices implemented in the 28nm UTBB-FDSOI technology can maintain its functionality up to 1 Mrad(Si). In the AR0 chip, we designed five ARM Cortex-M0 cores with different logic protection levels to investigate the performance of approximate logic protecting methods. There are three custom-designed SRAM blocks in the test chip, which can also be used to measure the SEU rate. From the simulation result, we concluded that the approximate logic methodology can protect the digital logic efficiently. This research comprehensively evaluates the radiation effects in the 28nm UTBB-FDSOI technology, which provides the baseline for later radiation-hardened system designs in this technology
    • …
    corecore