408,200 research outputs found

    A life-cycle cost model for green commercial office buildings with optimal green star credits

    Get PDF
    The green building is a widely discussed topic worldwide as a solution to increasing adverse impacts on the environment. The paradigm shift from conventional to green buildings is expected to yield environmental, social, and economic benefits. However, green building implementation is adversely affected by initial cost premiums although there are significant savings throughout the life-cycle of green buildings in terms of water, energy, and so on. Therefore, there is a clear need to analyse the initial stages of green building development regarding life-cycle impacts, capturing massive savings in energy, water, and other resources. Although it may be cheaper to select inappropriate technologies during the initial decision-making stages, more importantly, this may preclude life-cycle savings and the desired outcomes of green buildings. In order to aid the initial decision-makers with the selection of credit points considering the lowest life-cycle costs of green buildings, this research develops a life-cycle cost model that incorporates developer constraints while maximising the number of credit points achieved when using the Green Star Australia environmental rating system. The model is based on Green Star Design and As-Built version 1.1 rating tool. Initially, an extensive analysis is carried out for all the key criteria and credits of Green Star Design and As-Built version 1.1 rating tool. Based on the identification of different types of credits, certain credits were eliminated. Afterwards, interdependencies among various credits were established. For all the selected credits, life-cycle cost is calculated considering six main central business districts (CBDs) of Australia. The life-cycle cost calculation followed ‘Building and construction assets – service life planning – Part 5: Life-cycle costing standard’ published by the International Organisation for Standards (ISO) as a guideline. The net present value (NPV) technique is used to calculate life-cycle costs. Further, a sensitivity analysis is also carried out for selected credits to identify the changes to life-cycle cost to the changes in discount rate. Once all the life-cycle cost data is calculated, the proposed model was developed. The proposed model is developed considering a set of rules for exclusions, selections, and inter-dependencies. It initially collects user information and user constraints. Based on the user information, the model provides customised solutions to the users. The user can define the discount rate and even select the regional areas, and based on that information, the life-cycle cost is calculated by the proposed model. The user constraints select or eliminate credits, consider inter-dependencies, and calculate the optimum solutions for a specific green certification level. This model can provide optimum solutions for four-star or five-star certification levels considering Green Star rating. Finally, the proposed life-cycle cost model is validated in terms of cost and optimum credit selections. Cost is validated using costs comparisons with cost databases, industry reports, and actual green-certified buildings and interviews. To validate the credit selections, four case study buildings with Green Star certifications are considered. Based on the validation results, the cost calculations are within the range accepted by various sources. Further, the optimum credits proposed by the life-cycle cost model coincide with the credits obtained by the certified green buildings except for minor changes. Most of the credits that are proposed by the model yet not implemented by the case study buildings happen to have higher initial costs and lower life-cycle costs. This further strengthens the importance of using life-cycle costs during the initial decision-making stages for green building implementation. Further, credits with lower life-cycle costs are mostly eliminated owing to higher initial costs, which can be addressed by using the proposed life-cycle cost model. The model identified green building credits with cost savings, such as the use of photovoltaic panels, which are ignored during the initial stages owing to high initial costs. Further, this model proposed passive methods such as natural ventilation in buildings, using daylight and rainwater tanks to be considered for green building implementations. Out of all the key criteria in Green Star Design and As-Built v1.1, credits representing management criterion are widely achieved in green building implementation. This perfectly coincides with the proposed life-cycle cost model

    Storage Area Networks (SANs) in Business Environment

    Get PDF
    Storage Area Networks (SAN) in Business Environment is titled and initiated to design and implement Storage Area Networks architecture in the business operation. The project is divided into two terms, first is the research ofStorage Area Networks and the second is system development onthe Storage Area Networks Knowledge Management System. Research on the Storage Area Networks was based on the problem statement and objective of the project while the Storage Area Networks Knowledge Management System is the system in making decision to implement Storage Area Networks. The project will require a hybrid model for System Development Life Cycle (SDLC) methodology. Reviews on the system will be made according to the SDLC and the objectives of the project. Artificial Intelligent module is used for the Storage Area Networks system to determine the best Storage Area Networks solution for the business. Research will be more onthe implementation of the Storage Area Networks in the business based onthe cost, availability and the architecture of the Storage Area Networks. Advantages of the Storage Area Networks and several criteria inthe Storage Area Networks will be part of the Storage Area Networks research. Storage Area Networks give the best solution for business as the database is an important asset for the business. Performance, availability, flexibility and scalability are the main subject in considering Storage Area Networks. Keywords: Storage Area Networks, Knowledge Management System, hybrid model. System Development Life Cycl

    ELECTRONIC PROGNOSTICS AND HEALTH MANAGEMENT: A RETURN ON INVESTMENT ANALYSIS

    Get PDF
    Prognostics and Health Management (PHM) provides the potential to lower sustainment costs, to improve maintenance decision-making, and to provide product usage feedback into the product design and validation process. A case analysis was developed using a discrete event simulation to determine the benefits and the potential cost avoidance resulting from the use of PHM in avionics. The model allows for variability in implementation costs, operational profile, false alarms, random failure rates, and system composition to enable a comprehensive calculation of the Return on Investment (ROI) in support of acquisition decision making. The case analysis compared the life cycle costs using unscheduled maintenance to the life cycle costs using two types of PHM approaches

    Energy Management of a Battery-Ultracapacitor Hybrid Energy Storage System in Electric Vehicles

    Get PDF
    Electric vehicle (EV) batteries tend to have accelerated degradation due to high peak power and harsh charging/discharging cycles during acceleration and deceleration periods, particularly in urban driving conditions. An oversized energy storage system (ESS) can meet the high power demands; however, it suffers from increased size, volume and cost. In order to reduce the overall ESS size and extend battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) has been considered as an alternative solution. In this work, we investigate the optimized configuration, design, and energy management of a battery-UC HESS. One of the major challenges in a HESS is to design an energy management controller for real-time implementation that can yield good power split performance. We present the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC converter interfacing with the UC and the battery. In particular, a multi-objective optimization problem is formulated to optimize the power split in order to prolong the battery lifetime and to reduce the HESS power losses. This optimization problem is numerically solved for standard drive cycle datasets using Dynamic Programming (DP). Trained using the DP optimal results, an effective real-time implementation of the optimal power split is realized based on Neural Network (NN). This proposed online energy management controller is applied to a midsize EV model with a 360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy management controller effectively splits the load demand with high power efficiency and also effectively reduces the battery peak current. More importantly, a 38V-385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform has been developed. The real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the real-time controller design for the battery-UC HESS. A battery State-of-Health (SoH) estimation model is developed as a performance metric to evaluate the battery cycle life extension effect. It is estimated that the proposed online energy management controller can extend the battery cycle life by over 60%

    A proposed cost-benefit analysis model for physical form analysis for a futuristic submarine decision support system

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2007.Includes bibliographical references (leaves 81-82).This thesis proposes a model for cost-benefit analysis for physical form selection of a decision support tool, primarily to support system acquisition decisions that need to be made early in the system life cycle. By bringing objective and subjective costs and benefits into the same model and prescribing a unique approach to determining system utility, this thesis demonstrates how the proposed model can be applied for objective evaluation of display interfaces for a decision support system. The proposed model, which is applied to a proposed decision support system for submarine commanders managing multiple unmanned underwater vehicles, follows an integrated systems engineering approach by first determining function followed by form. A hybrid cognitive task analysis is used to determine function, and cost-benefit analysis is used to determine form. The hybrid cognitive task analysis is a method for determining functions of a futuristic system, and the proposed cost benefit model fills the gap for objective evaluation of form. The cost-benefit analysis was not straightforward, as determining objective usability of the physical display interfaces is difficult since it is not feasible to design fully functional interfaces and accompanying software in the conceptual design phase of the systems engineering process. Thus, one of the novel contributions of this cost-benefit model is the ability to objectively compare user performance across displays using a representative functional task in a relatively simple experimental setting.While the application of the proposed cost-benefit model is shown only for application to the submarine commander decision support interface, it can be easily adopted for other human-systems integration efforts where system acquisition decisions are involved. This would benefit decision makers and system integrators in effective resource allocation and useful system implementation in the conceptual design phase.by Dhiman Bhattacharjee.S.M

    RANCANG BANGUN SISTEM INFORMASI PENGELOLAAN MATERIAL SPRAY PAINTING DI PT WOHLRAB INDONESIA

    Get PDF
    PT Wohlrab Indonesia has indeed managed materials well. But in its implementation it takes time, energy, and money. This is because doing inventory calculations takes a long time, because it has to be written down on paper and then inputted in Ms. Excel and stored in the file folder. It also requires writing utensils, paper and other equipment. When viewed from a cost perspective, this process requires quite a lot of money because you have to pay for various writing equipment and others, including employee salaries. The research method used is observation, interviews, analysis, conclusion drawing and then the design method used is the SDLC (System Development Life Cycle) method with the Waterfall model. The purpose of this research is to design a Spray Painting Material Management Information System at PT Wohlrab Indonesia and also to build a spray painting material management information system at PT Wohlrab Indonesia. The results of this study are the need for a spray painting material management system at PT Wohlrab Indonesia, it can be concluded that PT Wohlrab Indonesia's spray painting material management information system is designed to provide convenience to admins in managing spray painting material because it is designed with an easy-to-understand or user friendly interface. can also process data quickly and accurately. PT Wohlrab Indonesia's spray painting material management information system uses web-based programming, developed using the PHP programming language and MySQL database. This system can improve admin performance in managing material data and can reduce errors in making reports, loss of material data because data stored in the database cannot be manipulated by parties who do not have access, even conducting data searches can be done quickly and accurately. Keywords : Information; Management; Materials; Systems

    Architecting Integrated System Health Management for Airworthiness

    Get PDF
    Integrated System Health Management (ISHM) for Unmanned Aerial Systems (UAS) has been a new area of research - seeking to provide situational awareness to mission and maintenance operations, and for improved decision-making with increased self-autonomy. This research effort developed an analytic architecture and an associated discrete-event simulation using Arena to investigate the potential benefits of ISHM implementation onboard an UAS. The objective of this research is two-fold: firstly, to achieve continued airworthiness by investigating the potential extension of UAS expected lifetime through ISHM implementation, and secondly, to reduce life cycle costs by implementing a Condition-Based Maintenance (CBM) policy with better failure predictions made possible with ISHM. Through a series of design experiments, it was shown that ISHM presented the most cost-effective improvement over baseline systems in situations where the reliability of the UAS is poor (relative to manned systems) and the baseline sensor exhibited poor qualities in terms of missed detection and false alarm rates. From the simulation results of the test scenarios, it was observed that failure occurrence rates, sensor quality characteristics and ISHM performance specifications were significant factors in determining the output responses of the model. The desired outcome of this research seeks to provide potential designers with top-level performance specifications of an ISHM system based on specified airworthiness and maintenance requirements for the envisaged ISHM-enabled UAS

    Costs, Benefits and Value Distribution – Ingredients for Successful Cross-Organizational ES Business Cases

    Get PDF
    This paper introduces my PhD research project on developing guidelines for creating successful business cases for Enterprise System implementations in network settings. Three important aspects that were found to be important in such business cases are: the costs, benefits and the value distribution within a network. Each of the three aspects is addressed in this paper and the relationships between them are pointed out. A research model is presented showing how all three aspects contribute to the main goal of defining successful business case guidelines

    Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions

    Full text link
    [EN] The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript focused on the analysis of the natural environment over 100 years, material replacement, waste recycling, traffic density, casualty costs, community benefits and other key factors. Based on the analysis data, the close connection between high pollution levels and high cost in the maintenance stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-making model was established, and a reasonable interval between gross domestic product (GDP) and sustainable development was determined.This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R.Zhou, Z.; Alcalá-González, J.; Yepes, V. (2021). Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions. International Journal of Environmental research and Public Health. 18(1):1-33. https://doi.org/10.3390/ijerph18010122S133181ISO 14044:2006/AMD 1:2017. Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/72357.htmlWuni, I. Y., Shen, G. Q. P., & Osei-Kyei, R. (2019). Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy and Buildings, 190, 69-85. doi:10.1016/j.enbuild.2019.02.010World Population in 2050https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.htmlHuisingh, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2015). Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling. Journal of Cleaner Production, 103, 1-12. doi:10.1016/j.jclepro.2015.04.098Zhang, X. (2014). Toward a regenerative sustainability paradigm for the built environment: from vision to reality. Journal of Cleaner Production, 65, 3-6. doi:10.1016/j.jclepro.2013.08.025Summary for Policymakers, Climate Change 2014: Mitigation of Climate Changehttps://www.buildup.eu/en/practices/publications/ipcc-2014-climate-change-2014-mitigation-climate-change-contribution-workingDong, Y. H., & Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. The International Journal of Life Cycle Assessment, 20(8), 1166-1180. doi:10.1007/s11367-015-0908-5Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109-1113. doi:10.1126/science.1248361Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., … Zachos, J. C. (2008). Target Atmospheric CO: Where Should Humanity Aim? The Open Atmospheric Science Journal, 2(1), 217-231. doi:10.2174/1874282300802010217WMO Statement on the State of the Global Climate in 2016https://library.wmo.int/doc_num.php?explnum_id=3414Lin, B., & Liu, H. (2015). CO2 emissions of China’s commercial and residential buildings: Evidence and reduction policy. Building and Environment, 92, 418-431. doi:10.1016/j.buildenv.2015.05.020Kim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074OpenLCA 1.10http://www.openlca.org/openlca/ISO,14044:2006/AMD 2:2020, Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/76122.htmlNavarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110O’Born, R. (2018). Life cycle assessment of large scale timber bridges: A case study from the world’s longest timber bridge design in Norway. Transportation Research Part D: Transport and Environment, 59, 301-312. doi:10.1016/j.trd.2018.01.018Milani, C. J., & Kripka, M. (2019). Evaluation of short span bridge projects with a focus on sustainability. Structure and Infrastructure Engineering, 16(2), 367-380. doi:10.1080/15732479.2019.1662815Trunzo, G., Moretti, L., & D’Andrea, A. (2019). Life Cycle Analysis of Road Construction and Use. Sustainability, 11(2), 377. doi:10.3390/su11020377Li, H., Deng, Q., Zhang, J., Xia, B., & Skitmore, M. (2019). Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. Journal of Cleaner Production, 210, 1496-1506. doi:10.1016/j.jclepro.2018.11.102Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239-1257. doi:10.1080/15732479.2016.1267772Goh, K. C., Goh, H. H., & Chong, H.-Y. (2019). Integration Model of Fuzzy AHP and Life-Cycle Cost Analysis for Evaluating Highway Infrastructure Investments. Journal of Infrastructure Systems, 25(1), 04018045. doi:10.1061/(asce)is.1943-555x.0000473Heidari, M. R., Heravi, G., & Esmaeeli, A. N. (2020). Integrating life-cycle assessment and life-cycle cost analysis to select sustainable pavement: A probabilistic model using managerial flexibilities. Journal of Cleaner Production, 254, 120046. doi:10.1016/j.jclepro.2020.120046Wang, Z., Yang, D. Y., Frangopol, D. M., & Jin, W. (2019). Inclusion of environmental impacts in life-cycle cost analysis of bridge structures. Sustainable and Resilient Infrastructure, 5(4), 252-267. doi:10.1080/23789689.2018.1542212Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2019). Life-Cycle Cost and Life-Cycle Assessment Analysis at the Design Stage of a Fiber-Reinforced Polymer-Reinforced Concrete Bridge in Florida. Advances in Civil Engineering Materials, 8(2), 20180113. doi:10.1520/acem20180113Social Impact Assessment (SIA)https://www.iucn.org/sites/dev/files/iucn_esms_sia_guidance_note.pdfZhang, A., Zhong, R. Y., Farooque, M., Kang, K., & Venkatesh, V. G. (2020). Blockchain-based life cycle assessment: An implementation framework and system architecture. Resources, Conservation and Recycling, 152, 104512. doi:10.1016/j.resconrec.2019.104512Parent, J., Cucuzzella, C., & Revéret, J.-P. (2010). Impact assessment in SLCA: sorting the sLCIA methods according to their outcomes. The International Journal of Life Cycle Assessment, 15(2), 164-171. doi:10.1007/s11367-009-0146-9Vanclay, F. (2019). Reflections on Social Impact Assessment in the 21st century. Impact Assessment and Project Appraisal, 38(2), 126-131. doi:10.1080/14615517.2019.1685807Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092Parsons, R. (2019). Forces for change in social impact assessment. Impact Assessment and Project Appraisal, 38(4), 278-286. doi:10.1080/14615517.2019.1692585Vanclay, F. (2003). International Principles for Social Impact Assessment: their evolution. Impact Assessment and Project Appraisal, 21(1), 3-4. doi:10.3152/147154603781766464Domínguez-Gómez, J. A. (2016). Four conceptual issues to consider in integrating social and environmental factors in risk and impact assessments. Environmental Impact Assessment Review, 56, 113-119. doi:10.1016/j.eiar.2015.09.009Fischer, T. B., Jha-Thakur, U., Fawcett, P., Clement, S., Hayes, S., & Nowacki, J. (2017). Consideration of urban green space in impact assessments for health. Impact Assessment and Project Appraisal, 36(1), 32-44. doi:10.1080/14615517.2017.1364021Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. The International Journal of Life Cycle Assessment, 25(11), 2140-2153. doi:10.1007/s11367-020-01825-6Balasbaneh, A. T., Marsono, A. K. B., & Khaleghi, S. J. (2018). Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. Journal of Building Engineering, 20, 235-247. doi:10.1016/j.jobe.2018.07.006Penadés-Plà, V., Martínez-Muñoz, D., García-Segura, T., Navarro, I. J., & Yepes, V. (2020). Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges. Sustainability, 12(10), 4265. doi:10.3390/su12104265Ali, M. S., Aslam, M. S., & Mirza, M. S. (2015). A sustainability assessment framework for bridges – a case study: Victoria and Champlain Bridges, Montreal. Structure and Infrastructure Engineering, 1-14. doi:10.1080/15732479.2015.1120754Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89-95. doi:10.1065/lca2008.02.376Hu, M. (2019). Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resources, Conservation and Recycling, 150, 104410. doi:10.1016/j.resconrec.2019.104410Ecoinventhttps://www.ecoinvent.org/database/database.htmlThe Regional Catalan Governmenthttps://en.itec.cat/database/Psilca Greendatebasehttps://psilca.net/Ortiz, O., Castells, F., & Sonnemann, G. (2009). Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials, 23(1), 28-39. doi:10.1016/j.conbuildmat.2007.11.012Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73-89. doi:10.1016/j.enbuild.2013.04.018Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394-416. doi:10.1016/j.rser.2013.08.037Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 143, 395-413. doi:10.1016/j.apenergy.2015.01.023Baker, L. (2018). Of embodied emissions and inequality: Rethinking energy consumption. Energy Research & Social Science, 36, 52-60. doi:10.1016/j.erss.2017.09.027Chen, L., Pelton, R. E. O., & Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 137, 667-676. doi:10.1016/j.jclepro.2016.07.094Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production, 261, 121158. doi:10.1016/j.jclepro.2020.121158Recipehttps://www.researchgate.net/publication/230770853_Recipe_2008New Version ReCiPe 2016 to Determine Environmental Impact|RIVMhttps://www.rivm.nl/en/news/new-version-recipe-2016-to-determine-environmental-impactPenadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864Zhou, Z., Alcalá, J., & Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16), 5953. doi:10.3390/ijerph17165953SimaProhttps://simapro.com/about/Lee, K.-M., Cho, H.-N., & Cha, C.-J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252-1265. doi:10.1016/j.engstruct.2005.12.008Navarro, I. J., Penadés-Plà, V., Martínez-Muñoz, D., Rempling, R., & Yepes, V. (2020). LIFE CYCLE SUSTAINABILITY ASSESSMENT FOR MULTI-CRITERIA DECISION MAKING IN BRIDGE DESIGN: A REVIEW. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 26(7), 690-704. doi:10.3846/jcem.2020.13599García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177Jang, B., & Mohammadi, J. (2019). Impact of fatigue damage from overloads on bridge life-cycle cost analysis. Bridge Structures, 15(4), 181-186. doi:10.3233/brs-190153Matos, J., Solgaard, A., Santos, C., Silva, M. S., Linneberg, P., Strauss, A., … Akiyama, M. (2017). Life Cycle Cost, As a Tool for Decision Making on Concrete Infrastructures. High Tech Concrete: Where Technology and Engineering Meet, 1832-1839. doi:10.1007/978-3-319-59471-2_210Edited by the Ministry of Construction, National Development and Reform Commission, 2002. Engineering Survey and Design Charging Standardshttps://wenku.baidu.com/view/3fa74a62effdc8d376eeaeaad1f34693daef1088.htmlRossi, B., Marquart, S., & Rossi, G. (2017). Comparative life cycle cost assessment of painted and hot-dip galvanized bridges. Journal of Environmental Management, 197, 41-49. doi:10.1016/j.jenvman.2017.03.022Wang, H., Schandl, H., Wang, X., Ma, F., Yue, Q., Wang, G., … Zheng, R. (2020). Measuring progress of China’s circular economy. Resources, Conservation and Recycling, 163, 105070. doi:10.1016/j.resconrec.2020.105070Wang, D., Liu, Q., Ma, L., Zhang, Y., & Cong, H. (2019). Road traffic accident severity analysis: A census-based study in China. Journal of Safety Research, 70, 135-147. doi:10.1016/j.jsr.2019.06.002Van der Vlegel, M., Haagsma, J. A., de Munter, L., de Jongh, M. A. C., & Polinder, S. (2020). Health Care and Productivity Costs of Non-Fatal Traffic Injuries: A Comparison of Road User Types. International Journal of Environmental Research and Public Health, 17(7), 2217. doi:10.3390/ijerph17072217Al-Rukaibi, F., AlKheder, S., AlOtaibi, N., & Almutairi, M. (2019). Traffic crashes cost estimation in Kuwait. International Journal of Crashworthiness, 25(2), 203-212. doi:10.1080/13588265.2019.1567966Jiménez, J. R., Ayuso, J., Agrela, F., López, M., & Galvín, A. P. (2012). Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resources, Conservation and Recycling, 58, 88-97. doi:10.1016/j.resconrec.2011.10.012Tavira, J., Jiménez, J. R., Ayuso, J., Sierra, M. J., & Ledesma, E. F. (2018). Functional and structural parameters of a paved road section constructed with mixed recycled aggregates from non-selected construction and demolition waste with excavation soil. Construction and Building Materials, 164, 57-69. doi:10.1016/j.conbuildmat.2017.12.195Sangiorgi, C., Lantieri, C., & Dondi, G. (2014). Construction and demolition waste recycling: an application for road construction. International Journal of Pavement Engineering, 16(6), 530-537. doi:10.1080/10298436.2014.943134Prenzel, P. V., & Vanclay, F. (2014). How social impact assessment can contribute to conflict management. Environmental Impact Assessment Review, 45, 30-37. doi:10.1016/j.eiar.2013.11.003Vanclay, F. (2003). International Principles For Social Impact Assessment. Impact Assessment and Project Appraisal, 21(1), 5-12. doi:10.3152/147154603781766491Esteves, A. M., Franks, D., & Vanclay, F. (2012). Social impact assessment: the state of the art. Impact Assessment and Project Appraisal, 30(1), 34-42. doi:10.1080/14615517.2012.660356Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53. doi:10.1016/j.eiar.2017.02.004Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003Shab-Homehttp://www.socialhotspot.org/PSILCA-A Product Social Impact Life Cycle Assessment Database Database Version 1.0https://www.openlca.org/wp-content/uploads/2016/08/PSILCA_documentation_v1.1.pdfGeographical Division of China-Wikiwand. Wikihttps://www.wikiwand.com/en/Geography_of_ChinaList of New Cities in China-Wikiwandhttps://m.sohu.com/n/486287408/Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle Ownership and Income Growth, Worldwide: 1960-2030. The Energy Journal, 28(4). doi:10.5547/issn0195-6574-ej-vol28-no4-7Wu, T., Zhang, M., & Ou, X. (2014). Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model. Energies, 7(11), 7454-7482. doi:10.3390/en7117454Shi, Y., Guo, S., & Sun, P. (2017). The role of infrastructure in China’s regional economic growth. Journal of Asian Economics, 49, 26-41. doi:10.1016/j.asieco.2017.02.004International Association for Impact Assessment Purpose and Intended Readershiphttps://www.socialimpactassessment.com/documents/IAIA%202015%20Social%20Impact%20Assessment%20guidance%20document.pdfAppiah-Opoku, S. (2015). Land access and resettlement: a guide to best practice, by Gerry Reddy, Eddie Smyth, and Michael Steyn. Impact Assessment and Project Appraisal, 33(4), 290-290. doi:10.1080/14615517.2015.1069667Virtual de Publicaciones del M. de. 2010. Code on Structural Concrete (EHE-08) Articles and Annexeshttp://asidac.es/asidac-en/wp-content/uploads/2016/07/EHE-ENG.pdfSuzuki, S., & Nijkamp, P. (2016). An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis. Energy Policy, 88, 100-112. doi:10.1016/j.enpol.2015.10.00

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition
    corecore