169 research outputs found

    Optimal Convergence Rates for the Proximal Bundle Method

    Full text link
    We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a H\"older growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it exhibits suboptimal convergence rates. We overcome this shortcoming by proposing nonconstant stepsize schemes with optimal rates. These schemes use function information such as growth constants, which might be prohibitive in practice. We provide a parallelizable variant of the bundle method that can be applied without prior knowledge of function parameters while maintaining near-optimal rates. The practical impact of this scheme is limited since we incur a (parallelizable) log factor in the complexity. These results improve on the scarce existing convergence rates and provide a unified analysis approach across problem settings and algorithmic details. Numerical experiments support our findings

    Proximal bundle method for contact shape optimization problem

    Get PDF
    From the mathematical point of view, the contact shape optimization is a problem of nonlinear optimization with a specific structure, which can be exploited in its solution. In this paper, we show how to overcome the difficulties related to the nonsmooth cost function by using the proximal bundle methods. We describe all steps of the solution, including linearization, construction of a descent direction, line search, stopping criterion, etc. To illustrate the performance of the presented algorithm, we solve a shape optimization problem associated with the discretized two-dimensional contact problem with Coulomb's friction

    An improved partial bundle method for linearly constrained minimax problems

    Full text link

    Bundle methods in nonsmooth DC optimization

    Get PDF
    Due to the complexity of many practical applications, we encounter optimization problems with nonsmooth functions, that is, functions which are not continuously differentiable everywhere. Classical gradient-based methods are not applicable to solve such problems, since they may fail in the nonsmooth setting. Therefore, it is imperative to develop numerical methods specifically designed for nonsmooth optimization. To date, bundle methods are considered to be the most efficient and reliable general purpose solvers for this type of problems. The idea in bundle methods is to approximate the subdifferential of the objective function by a bundle of subgradients. This information is then used to build a model for the objective. However, this model is typically convex and, due to this, it may be inaccurate and unable to adequately reflect the behaviour of the objective function in the nonconvex case. These circumstances motivate to design new bundle methods based on nonconvex models of the objective function. In this dissertation, the main focus is on nonsmooth DC optimization that constitutes an important and broad subclass of nonconvex optimization problems. A DC function can be presented as a difference of two convex functions. Thus, we can obtain a model that utilizes explicitly both the convexity and concavity of the objective by approximating separately the convex and concave parts. This way we end up with a nonconvex DC model describing the problem more accurately than the convex one. Based on the new DC model we introduce three different bundle methods. Two of them are designed for unconstrained DC optimization and the third one is capable of solving also multiobjective and constrained DC problems. The finite convergence is proved for each method. The numerical results demonstrate the efficiency of the methods and show the benefits obtained from the utilization of the DC decomposition. Even though the usage of the DC decomposition can improve the performance of the bundle methods, it is not always available or possible to construct. Thus, we present another bundle method for a general objective function implicitly collecting information about the DC structure. This method is developed for large-scale nonsmooth optimization and its convergence is proved for semismooth functions. The efficiency of the method is shown with numerical results. As an application of the developed methods, we consider the clusterwise linear regression (CLR) problems. By applying the support vector machines (SVM) approach a new model for these problems is proposed. The objective in the new formulation of the CLR problem is expressed as a DC function and a method based on one of the presented bundle methods is designed to solve it. Numerical results demonstrate robustness of the new approach to outliers.Monissa käytännön sovelluksissa tarkastelun kohteena oleva ongelma on monimutkainen ja joudutaan näin ollen mallintamaan epäsileillä funktioilla, jotka eivät välttämättä ole jatkuvasti differentioituvia kaikkialla. Klassisia gradienttiin perustuvia optimointimenetelmiä ei voida käyttää epäsileisiin tehtäviin, sillä epäsileillä funktioilla ei ole olemassa klassista gradienttia kaikkialla. Näin ollen epäsileään optimointiin on välttämätöntä kehittää omia numeerisia ratkaisumenetelmiä. Näistä kimppumenetelmiä pidetään tällä hetkellä kaikista tehokkaimpina ja luotettavimpina yleismenetelminä kyseisten tehtävien ratkaisemiseksi. Ideana kimppumenetelmissä on approksimoida kohdefunktion alidifferentiaalia kimpulla, joka on muodostettu keräämällä kohdefunktion aligradientteja edellisiltä iteraatiokierroksilta. Tätä tietoa hyödyntämällä voidaan muodostaa kohdefunktiolle malli, joka on alkuperäistä tehtävää helpompi ratkaista. Käytetty malli on tyypillisesti konveksi ja näin ollen se voi olla epätarkka ja kykenemätön esittämään alkuperäisen tehtävän rakennetta epäkonveksissa tapauksessa. Tästä syystä väitöskirjassa keskitytään kehittämään uusia kimppumenetelmiä, jotka mallinnusvaiheessa muodostavat kohdefunktiolle epäkonveksin mallin. Pääpaino väitöskirjassa on epäsileissä optimointitehtävissä, joissa funktiot voidaan esittää kahden konveksin funktion erotuksena (difference of two convex functions). Kyseisiä funktioita kutsutaan DC-funktioiksi ja ne muodostavat tärkeän ja laajan epäkonveksien funktioiden osajoukon. Tämä valinta mahdollistaa kohdefunktion konveksisuuden ja konkaavisuuden eksplisiittisen hyödyntämisen, sillä uusi malli kohdefunktiolle muodostetaan yhdistämällä erilliset konveksille ja konkaaville osalle rakennetut mallit. Tällä tavalla päädytään epäkonveksiin DC-malliin, joka pystyy kuvaamaan ratkaistavaa tehtävää tarkemmin kuin konveksi arvio. Väitöskirjassa esitetään kolme erilaista uuden DC-mallin pohjalta kehitettyä kimppumenetelmää sekä todistetaan menetelmien konvergenssit. Kaksi näistä menetelmistä on suunniteltu rajoitteettomaan DC-optimointiin ja kolmannella voidaan ratkaista myös monitavoitteisia ja rajoitteellisia DC-optimointitehtäviä. Numeeriset tulokset havainnollistavat menetelmien tehokkuutta sekä DC-hajotelman käytöstä saatuja etuja. Vaikka DC-hajotelman käyttö voi parantaa kimppumenetelmien suoritusta, sitä ei aina ole saatavilla tai mahdollista muodostaa. Tästä syystä väitöskirjassa esitetään myös neljäs kimppumenetelmä konvergenssitodistuksineen yleiselle kohdefunktiolle, jossa kerätään implisiittisesti tietoa kohdefunktion DC-rakenteesta. Menetelmä on kehitetty erityisesti suurille epäsileille optimointitehtäville ja sen tehokkuus osoitetaan numeerisella testauksella Sovelluksena väitöskirjassa tarkastellaan datalle klustereittain tehtävää lineaarista regressiota (clusterwise linear regression). Kyseiselle sovellukselle muodostetaan uusi malli hyödyntäen koneoppimisessa käytettyä SVM-lähestymistapaa (support vector machines approach) ja saatu kohdefunktio esitetään DC-funktiona. Näin ollen yhtä kehitetyistä kimppumenetelmistä sovelletaan tehtävän ratkaisemiseen. Numeeriset tulokset havainnollistavat uuden lähestymistavan robustisuutta ja tehokkuutta

    Standard Bundle Methods: Untrusted Models and Duality

    Get PDF
    We review the basic ideas underlying the vast family of algorithms for nonsmooth convex optimization known as "bundle methods|. In a nutshell, these approaches are based on constructing models of the function, but lack of continuity of first-order information implies that these models cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization have been proposed to try to avoid being led to areas where the model is so inaccurate as to result in almost useless steps. In the development of these methods, duality arguments are useful, if not outright necessary, to better analyze the behaviour of the algorithms. Also, in many relevant applications the function at hand is itself a dual one, so that duality allows to map back algorithmic concepts and results into a "primal space" where they can be exploited; in turn, structure in that space can be exploited to improve the algorithms' behaviour, e.g. by developing better models. We present an updated picture of the many developments around the basic idea along at least three different axes: form of the stabilization, form of the model, and approximate evaluation of the function
    corecore