45 research outputs found

    Modified memoryless spectral-scaling Broyden family on Riemannian manifolds

    Full text link
    This paper presents modified memoryless quasi-Newton methods based on the spectral-scaling Broyden family on Riemannian manifolds. The method involves adding one parameter to the search direction of the memoryless self-scaling Broyden family on the manifold. Moreover, it uses a general map instead of vector transport. This idea has already been proposed within a general framework of Riemannian conjugate gradient methods where one can use vector transport, scaled vector transport, or an inverse retraction. We show that the search direction satisfies the sufficient descent condition under some assumptions on the parameters. In addition, we show global convergence of the proposed method under the Wolfe conditions. We numerically compare it with existing methods, including Riemannian conjugate gradient methods and the memoryless spectral-scaling Broyden family. The numerical results indicate that the proposed method with the BFGS formula is suitable for solving an off-diagonal cost function minimization problem on an oblique manifold.Comment: 20 pages, 8 figure

    Parallel algorithms for nonlinear optimization

    Get PDF
    Parallel algorithm design is a very active research topic in optimization as parallel computer architectures have recently become easily accessible. This thesis is about an approach for designing parallel nonlinear programming algorithms. The main idea is to benefit from parallelization in designing new algorithms rather than considering direct parallelizations of the existing methods. We give a general framework following our approach, and then, give distinct algorithms that fit into this framework. The example algorithms we have designed either use procedures of existing methods within a multistart scheme, or they are completely new inherently parallel algorithms. In doing so, we try to show how it is possible to achieve parallelism in algorithm structure (at different levels) so that the resulting algorithms have a good solution performance in terms of robustness, quality of steps, and scalability. We complement our discussion with convergence proofs of the proposed algorithms

    Studies on modified limited-memory BFGS method in full waveform inversion

    Get PDF
    Full waveform inversion (FWI) is a non-linear optimization problem based on full-wavefield modeling to obtain quantitative information of subsurface structure by minimizing the difference between the observed seismic data and the predicted wavefield. The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is an effective quasi-Newton method in FWI due to its high inversion efficiency with low calculation and storage requirements. Like other conventional quasi-Newton methods, the approximation of the Hessian matrix in the L-BFGS method satisfies the quasi-Newton equation, which only exploits the gradient and model information while the available objective function value is neglected. The modified quasi-Newton equation considers the gradient, model, and objective function information together. Theoretical analysis reveals that the modified quasi-Newton equation is superior to the conventional quasi-Newton equation as it achieves higher-order accuracy in approximating the Hessian matrix. The modified L-BFGS method can be obtained by using the modified quasi-Newton equation to modify the L-BFGS method. This modification improves the accuracy of the Hessian matrix approximation with little increase of calculation for each iteration. We incorporate the modified L-BFGS method into FWI, numerical results show that the modified L-BFGS method has a higher convergence rate, achieves better inversion results, and has stronger anti-noise ability than the conventional L-BFGS method

    Modelling zinc oxide thin-film growth

    Get PDF
    Photovoltaics have a significant role in the solution of energy supply and energy security. Research on photovoltaic devices and their production processes has been carried out for decades. The transparent conducting oxide layer, in the photovoltaic solar cell, composed of aluminium doped zinc oxide, is produced through deposition techniques. By modelling these depositions using classical molecular dynamics, a better understanding on the short term kinetics occurring on the growing surface has been achieved. Compared to the molecular dynamics, the employment of the adaptive kinetic Monte Carlo method enabled such surface growth dynamics simulation to reach much longer time scale. Parallelised transition searching was carried out in an on-the-fly manner without lattice approximation or predefined events table. The simulation techniques allowed deposition conditions to be easily changed, such as deposition energy, deposition rate, substrate temperature, plasma pressure, etc. Therefore, in this project three main deposition techniques were modelled including evaporation (thermal and assisted electron beam), reactive magnetron sputtering and pulsed laser depositions. ZnO as a covalent compound with many uses in semiconductors was investigated in its most energy favourable wurtzite configuration. The O-terminated surface was used as the substrate for the growth simulation. Evaporation deposition at room temperature (300 K) with a stoichiometric distribution of deposition species produced incomplete new layers. Holes were observed existing for long times in each layer. Also, stacking faults were formed during the low-energy (1 eV) growth through evaporation. The reactive sputtering depositions were more capable of getting rid of these holes structures and diminished these stacking faults through high energy bombardments but could also break these desirable crystalline structure during the growth. However, single deposition results with high energies showed that the ZnO lattice presented good capacity of self-healing after energetic impacts. Additionally, such self-healing effects were seen for substrate surface during thin film growth by the sputtering depositions. These facts shed some light on that the sputtering technique is the method of choice for ZnO thin film depositions during industrial production. Simulation results of pulsed laser deposition with separated Zn and O species showed the thin films were grown in porous structures as the O-terminated surface could be severely damaged by Zn atoms during the very short pulse window (10 microseconds). An important growth mechanism with ZnO dimer deposited on the O-terminated polar surface was the coupling of these single ZnO dimers, forming highly mobile strings along the surface and thus quenching its dipole moments, whilst the isolated single ZnO dimers were hardly of this mobility. Such strings were the building blocks for the fabrication occurring on the surface resulting in new layers. Last but not least, a reactive force field for modelling Al doped ZnO was fitted. DFT calculations showed that the Al atoms on the surface were likely to replace Zn atoms in their lattice sites for more energy favourable structures. Al on the ZnO surfaces, structures with Al in the bulk as well as configurations with Al interstitials were used to train the force field to reproduce favourable surface binding sites, cohesive energies and lattice dimensions. The combination scheme of MD and the AKMC allowed simulation work to reach over experimentally realistic time scale. Therefore, crucial mechanisms occurring during the growth could be precisely understood and investigated on an atomistic level. It has been shown from the simulation results that certain types of deposition play significant roles in the quality of resultant thin films and surface morphology, thus providing insight to the optimal deposition conditions for growing complete crystalline ZnO layers

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore