22 research outputs found

    Measurement-Driven Algorithm and System Design for Wireless and Datacenter Networks

    Get PDF
    The growing number of mobile devices and data-intensive applications pose unique challenges for wireless access networks as well as datacenter networks that enable modern cloud-based services. With the enormous increase in volume and complexity of traffic from applications such as video streaming and cloud computing, the interconnection networks have become a major performance bottleneck. In this thesis, we study algorithms and architectures spanning several layers of the networking protocol stack that enable and accelerate novel applications and that are easily deployable and scalable. The design of these algorithms and architectures is motivated by measurements and observations in real world or experimental testbeds. In the first part of this thesis, we address the challenge of wireless content delivery in crowded areas. We present the AMuSe system, whose objective is to enable scalable and adaptive WiFi multicast. AMuSe is based on accurate receiver feedback and incurs a small control overhead. This feedback information can be used by the multicast sender to optimize multicast service quality, e.g., by dynamically adjusting transmission bitrate. Specifically, we develop an algorithm for dynamic selection of a subset of the multicast receivers as feedback nodes which periodically send information about the channel quality to the multicast sender. Further, we describe the Multicast Dynamic Rate Adaptation (MuDRA) algorithm that utilizes AMuSe's feedback to optimally tune the physical layer multicast rate. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. We implemented the AMuSe system on the ORBIT testbed and evaluated its performance in large groups with approximately 200 WiFi nodes. Our extensive experiments demonstrate that AMuSe can provide accurate feedback in a dense multicast environment. It outperforms several alternatives even in the case of external interference and changing network conditions. Further, our experimental evaluation of MuDRA on the ORBIT testbed shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of nodes while meeting quality requirements. As an example application, MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality. Next, we specifically focus on ensuring high Quality of Experience (QoE) for video streaming over WiFi multicast. We formulate the problem of joint adaptation of multicast transmission rate and video rate for ensuring high video QoE as a utility maximization problem and propose an online control algorithm called DYVR which is based on Lyapunov optimization techniques. We evaluated the performance of DYVR through analysis, simulations, and experiments using a testbed composed of Android devices and o the shelf APs. Our evaluation shows that DYVR can ensure high video rates while guaranteeing a low but acceptable number of segment losses, buffer underflows, and video rate switches. We leverage the lessons learnt from AMuSe for WiFi to address the performance issues with LTE evolved Multimedia Broadcast/Multicast Service (eMBMS). We present the Dynamic Monitoring (DyMo) system which provides low-overhead and real-time feedback about eMBMS performance. DyMo employs eMBMS for broadcasting instructions which indicate the reporting rates as a function of the observed Quality of Service (QoS) for each UE. This simple feedback mechanism collects very limited QoS reports which can be used for network optimization. We evaluated the performance of DyMo analytically and via simulations. DyMo infers the optimal eMBMS settings with extremely low overhead, while meeting strict QoS requirements under different UE mobility patterns and presence of network component failures. In the second part of the thesis, we study datacenter networks which are key enablers of the end-user applications such as video streaming and storage. Datacenter applications such as distributed file systems, one-to-many virtual machine migrations, and large-scale data processing involve bulk multicast flows. We propose a hardware and software system for enabling physical layer optical multicast in datacenter networks using passive optical splitters. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Our evaluation shows that the optical multicast architecture can achieve higher throughput and lower latency than IP multicast and peer-to-peer multicast schemes with lower switching energy consumption. Finally, we study the problem of congestion control in datacenter networks. Quantized Congestion Control (QCN), a switch-supported standard, utilizes direct multi-bit feedback from the network for hardware rate limiting. Although QCN has been shown to be fast-reacting and effective, being a Layer-2 technology limits its adoption in IP-routed Layer 3 datacenters. We address several design challenges to overcome QCN feedback's Layer- 2 limitation and use it to design window-based congestion control (QCN-CC) and load balancing (QCN-LB) schemes. Our extensive simulations, based on real world workloads, demonstrate the advantages of explicit, multi-bit congestion feedback, especially in a typical environment where intra-datacenter traffic with short Round Trip Times (RTT: tens of s) run in conjunction with web-facing traffic with long RTTs (tens of milliseconds)

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio
    corecore