1,410 research outputs found

    Safetynet version 2, a packet error recovery architecture for vertical handoffs

    Get PDF
    Mobile devices are connecting to the Internet through an increasingly heterogeneous network environment. This connectivity via multiple types of wireless networks allows the mobile devices to take advantage of the high speed and the low cost of wireless local area networks and the large coverage of wireless wide area networks. To maximize the benefits from these complementing characteristics, the mobile devices need to be able to switch seamlessly between the different network types. However, the switch between the technologies, also known as a vertical handoff, often results in significant packet loss and degradation of connectivity due to handoff delay and also increased packet loss rate on the border of the coverage area of the networks. In our previous work, we have proposed an inter technology mobility management architecture which addresses the packet losses using selective resending of packets lost during the handoff period. In this paper, we extend the architecture to address packet losses due to wireless errors more efficiently by taking advantage of erasure codes to form redundancy packets. We propose to send these redundancy packets over both links. We show that this proposal reduces both the chances of packet loss and the buffering requirements of the original Safetynet scheme

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Mitigating TCP Degradation over Intermittent Link Failures Using Intermediate Buffers

    Get PDF
    This thesis addresses the improvement of data transmission performance in a challenged network. It is well known that the popular Transmission Control Protocol degrades in environments where one or more of the links along the route is intermittently available. To avoid this degradation, this thesis proposes placing at least one node along the path of transmission to buffer and retransmit as needed to overcome the intermittent link. In the four-node, three-link testbed under particular conditions, file transmission time was reduced 20 fold in the case of an intermittent second link when the second node strategically buffers for retransmission opportunity

    Minimal TCP/IP implementation with proxy support

    Get PDF
    Over the last years, interest for connecting small devices such as sensors to an existing network infrastructure such as the global Internet has steadily increased. Such devices often has very limited CPU and memory resources and may not be able to run an instance of the TCP/IP protocol suite. In this thesis, techniques for reducing the resource usage in a TCP/IP implementation is presented. A generic mechanism for offloading the TCP/IP stack in a small device is described. The principle the mechanism is to move much of the resource demanding tasks from the client to an intermediate agent known as a proxy. In particular, this pertains to the buffering needed by TCP. The proxy does not require any modifications to TCP and may be used with any TCP/IP implementation. The proxy works at the transport level and keeps some of the end to end semantics of TCP. Apart from the proxy mechanism, a TCP/IP stack that is small enough in terms of dynamic memory usage and code footprint to be used in a minimal system has been developed. The TCP/IP stack does not require help from a proxy, but may be configured to take advantage of a supporting proxy

    G-Snoop: Enhancing TCP performance over wireless networks

    Get PDF
    Focusing on a general wireless network where a wireless link can be at any link along the sender-to-receiver path, a new TCP enhancement scheme, called Generalized-Snoop (G-Snoop), is proposed. Since many existing applications are built on top of TCP, it is essential that any TCP enhancement scheme should be transparent to the end-systems as well as the fixed networks. To achieve this, G-Snoop only needs to be implemented at the wireless gateways, no other parts of the network require modifications. With G-Snoop, TCP senders are shielded from non-congestion packet loss and thus no unnecessary congestion control mechanisms will be performed. Simulation results show that significant throughout gain can be obtained with G-Snoop.published_or_final_versio
    • …
    corecore