213 research outputs found

    An admission control scheme for IEEE 802.11e wireless local area networks

    Get PDF
    Includes bibliographical references (leaves 80-84).Recent times has seen a tremendous increase in the deployment and use of 802.11 Wireless Local Area Networks (WLANs). These networks are easy to deploy and maintain, while providing reasonably high data rates at a low cost. In the paradigm of Next-Generation-Networks (NGNs), WLANs can be seen as an important access network technology to support IP multimedia services. However a traditional WLAN does not provide Quality of Service (QoS) support since it was originally designed for best effort operation. The IEEE 802. 11e standard was introduced to overcome the lack of QoS support for the legacy IEEE 802 .11 WLANs. It enhances the Media Access Control (MAC) layer operations to incorporate service differentiation. However, there is a need to prevent overloading of wireless channels, since the QoS experienced by traffic flows is degraded with heavily loaded channels. An admission control scheme for IEEE 802.11e WLANs would be the best solution to limit the amount of multimedia traffic so that channel overloading can be prevented. Some of the work in the literature proposes admission control solutions to protect the QoS of real-time traffic for IEEE 802.11e Enhanced Distributed Channel Access (EDCA). However, these solutions often under-utilize the resources of the wireless channels. A measurement-aided model-based admission control scheme for IEEE 802.11e EDCA WLANs is proposed to provide reasonable bandwidth guarantees to all existing flows. The admission control scheme makes use of bandwidth estimations that allows the bandwidth guarantees of all the flows that are admitted into the network to be protected. The bandwidth estimations are obtained using a developed analytical model of IEEE 802.11e EDCA channels. The admission control scheme also aims to accept the maximum amount of flows that can be accommodated by the network's resources. Through simulations, the performance of the proposed admission control scheme is evaluated using NS-2. Results show that accurate bandwidth estimations can be obtained when comparing the estimated achievable bandwidth to actual simulated bandwidth. The results also validate that the bandwidth needs of all admitted traffic are always satisfied when the admission control scheme is applied. It was also found that the admission control scheme allows the maximum amount of flows to be admitted into the network, according the network's capacity

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Modeling and performance analysis of an alternative to IEEE 802.11e Hybrid Control Function

    Get PDF
    Modern wireless networks are offering a wide range of applications that require the efficient integration of multimedia and traditional data traffic along with QoS provision. The IEEE 802.11e workgroup has standardized a new QoS enhanced access scheme for wireless LANs, namely Hybrid Control Function (HCF). HCF consists of the Enhanced Distributed Channel Access (EDCA) and the Hybrid Control Channel Access (HCCA) protocols which manage to ensure QoS support. However, they exhibit specific weaknesses that limit network performance. This work analyzes an alternative protocol, called Priority Oriented Adaptive Polling (POAP). POAP is an integrated channel access mechanism, is collision free, it employs priorities to differentiate traffic in a proportional way, it provides fairness, and generally supports QoS for all types of multimedia applications, while efficiently serving background data traffic. POAP is compared to HCF in order to examine the wireless network performance when serving integrated traffic

    A differentiated Services Architecture for Quality of Service Provisioning in Wireless Local Area Networks

    Get PDF
    Currently the issue of Quality of Service (QoS) is a major problem in IP networks due to the growth in multimedia traffic (e.g. voice and video applications) and therefore many mechanisms like IntServ, DiffServ, etc. have been proposed. Since the IEEE 802.11b (or Wi-Fi) standard was approved in 1999, it has gained in popularity to become the leading Wireless Local Area Network (WLAN) technology with millions of such networks deployed worldwide. Wireless networks have a limited capacity (11 Mbits/s in the case of Wi-Fi networks) owing to the limited amount of frequency spectrum available. At any given time there may be a large number of users contending for access which results in the bandwidth available to each user being severely limited. Moreover, the system does not differentiate between traffic types which means that all traffic, regardless of its importance or priority, experiences the same QoS. An important network application requiring QoS guarantees is the provision of time-bounded services, such as voice over IP and video streaming, where the combination of packet delay, jitter and packet loss will impact on the perceived QoS. Consequently this has led to a large amount of research work focussing mainly on QoS enhancement schemes for the 802.11 MAC mechanism. The Task Group E of the IEEE 802.11 working group has been developing an extension to the Wi-Fi standard that proposes to make changes to the MAC mechanism to support applications with QoS requirements. The 802.11e QoS standard is currently undergoing final revisions before approval expected sometime in 2004. As 802.11e WLAN equipment is not yet available, performance reports can only be based on simulation. The objective of this thesis was to develop a computer simulator that implements the upcoming IEEE 802.11e standard and to use this simulator to evaluate the QoS performance enhancement potential of 802.11e. This thesis discusses the QoS facilities, analyses the MAC protocol enhancements and compares them with the original 802.11 standard. The issue of QoS provisioning is primarily concerned with providing predictable performance guarantees with regard to throughput, packet delay, jitter and packet loss. The simulated results indicate that the proposed QoS enhancements to the MAC will considerably improve QoS performance in 802.11b WLANs. However, in order for the proposed 802.11e QoS mechanism to be effective the 802.11e parameters will need to be continually adjusted in order to ensure QoS guarantees are fulfilled for all traffic loads

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN
    corecore